Recently,plasma-assisted combustion has become a potentially applicable technology in many combustion scenarios.In this paper,a dielectric barrier discharge(DBD) plasma generator is designed to explore the effect of...Recently,plasma-assisted combustion has become a potentially applicable technology in many combustion scenarios.In this paper,a dielectric barrier discharge(DBD) plasma generator is designed to explore the effect of plasma on the CH4 oxidation process,and several properties of combustion are considered.First,in the presence or absence of plasma discharge,physical appearance of the flame is examined and analyzed.Second,the flame propagation velocity is calculated by the flame front extracted from the imaging data with the Bunsen burner method.Finally,the main molecular components and their intensity variation in the flame and the plasma zones are identified with an emission spectrograph to analyze the effect of active species on the combustion process.We also discuss the possible kinetic regime of plasma-assisted combustion.Experimental results imply that plasma discharge applied to the premixed CH_4/O_2/He mixture significantly raises the flame speed with equivalence ratios ranging from 0.85 to 1.10,with the flame speed improved by 17%to 35%.It can be seen that plasma can improve methane oxidation efficiency in the premixed fuel/oxidizer,especially at a low equivalence ratio.展开更多
Organic dust flames deal with a field of science in which many complicated phenomena like pyrolysis or devolatization of solid particles and combustion of volatile particles take place. One-dimensional flame propagati...Organic dust flames deal with a field of science in which many complicated phenomena like pyrolysis or devolatization of solid particles and combustion of volatile particles take place. One-dimensional flame propagation in cloud of fuel mixture is analyzed in which flame structure is divided into three zones. The first zone is preheat zone in which rate of the chemical reaction is small and transfer phenomena play significant role in temperature and mass distributions. In this model, it is assumed that particles pyrolyze first to yield a gaseous fuel mixture. The second zone is reaction zone where convection and vaporization rates of the particles are small. The third zone is convection zone where diffusive terms are negligible in comparison of other terms. Non-zero Biot number is used in order to study effect of particles thermal resistance on flame characteristics. Also, effect of particle size on combustion of micro organic dust is investigated. According to obtained results, it is understood that both flame temperature and burning velocity decrease with rise in the Biot number and particle size.展开更多
基金supported by the Fundamental Research Funds for the Central Universities of China(No.xjj2013086)Natural Science Basic Research Plan in Shaanxi Province of China(No.2014JQ7254)National Natural Science Foundation of China(No.51477135)
文摘Recently,plasma-assisted combustion has become a potentially applicable technology in many combustion scenarios.In this paper,a dielectric barrier discharge(DBD) plasma generator is designed to explore the effect of plasma on the CH4 oxidation process,and several properties of combustion are considered.First,in the presence or absence of plasma discharge,physical appearance of the flame is examined and analyzed.Second,the flame propagation velocity is calculated by the flame front extracted from the imaging data with the Bunsen burner method.Finally,the main molecular components and their intensity variation in the flame and the plasma zones are identified with an emission spectrograph to analyze the effect of active species on the combustion process.We also discuss the possible kinetic regime of plasma-assisted combustion.Experimental results imply that plasma discharge applied to the premixed CH_4/O_2/He mixture significantly raises the flame speed with equivalence ratios ranging from 0.85 to 1.10,with the flame speed improved by 17%to 35%.It can be seen that plasma can improve methane oxidation efficiency in the premixed fuel/oxidizer,especially at a low equivalence ratio.
文摘Organic dust flames deal with a field of science in which many complicated phenomena like pyrolysis or devolatization of solid particles and combustion of volatile particles take place. One-dimensional flame propagation in cloud of fuel mixture is analyzed in which flame structure is divided into three zones. The first zone is preheat zone in which rate of the chemical reaction is small and transfer phenomena play significant role in temperature and mass distributions. In this model, it is assumed that particles pyrolyze first to yield a gaseous fuel mixture. The second zone is reaction zone where convection and vaporization rates of the particles are small. The third zone is convection zone where diffusive terms are negligible in comparison of other terms. Non-zero Biot number is used in order to study effect of particles thermal resistance on flame characteristics. Also, effect of particle size on combustion of micro organic dust is investigated. According to obtained results, it is understood that both flame temperature and burning velocity decrease with rise in the Biot number and particle size.