期刊文献+
共找到3篇文章
< 1 >
每页显示 20 50 100
Research on combustion characteristics of scramjet combustor with different flight dynamic pressure conditions
1
作者 Junlong Zhang Guangjun Feng +2 位作者 Haotian Bai Kangshuai Lv Wen Bao 《Propulsion and Power Research》 SCIE 2023年第1期69-82,共14页
Combustion characteristics in a scramjet combustor equipped with a thin strut were observed and discussed in this paper.A series of numerical simulations were carried out under different flight dynamic pressure condit... Combustion characteristics in a scramjet combustor equipped with a thin strut were observed and discussed in this paper.A series of numerical simulations were carried out under different flight dynamic pressure conditions.The parameters of cold flow field and combustion field were used to analyze the combustion characteristics.Based on the basic data,the mixing efficiency,characteristics of flame establishment and propagation as well as combustion field characteristics were discussed in this paper.The influence laws of lower dynamic pressure conditions were further revealed to optimize combustor performance.Results indicated that properly reducing the flight dynamic pressure can enhance the mixing of kerosene.The diffusion of kerosene determined the distribution of combustion zone and heat release.Then,the influencing factor that affected the chemical reaction rate was revealed to shorten chemical reaction time.And the higher flight Mach number made the flame propagation velocity faster and the combustion stability stronger.The fuel mixing became the main factor and low dynamic pressure had little effect on laminar flame propagation velocity under high Mach number conditions.The investigations in this paper are helpful for understanding the combustion characteristics under low dynamic pressure conditions. 展开更多
关键词 Low flight dynamic pressure Fuel mixing characteristics flame propagation characteristics Combustion characteristics
原文传递
Experimental Investigation on Flame Characterization and Temperature Profile of Single/Multiple Pool Fire in Cross Wind 被引量:1
2
作者 CHEN Zhen WEI Xiaolin LI Teng 《Journal of Thermal Science》 SCIE EI CAS CSCD 2021年第1期324-332,共9页
An experimental study was carried out to investigate the flame characterization and temperature profile for single and multiple pool fire with the influence of cross wind.There were 13 test cases in total,categorized ... An experimental study was carried out to investigate the flame characterization and temperature profile for single and multiple pool fire with the influence of cross wind.There were 13 test cases in total,categorized into circle and rectangle fuel pans,with diameter(or equivalent diameter)ranged from 50 mm to 300 mm.Kerosene was used for the fuel of pool fire.Some K-type thermocouples were arranged around the flame to monitor the flame temperature,while the flame tilt angle was measured based on the photograph of flame for different case.Firstly,it can be found that there are three phases,including preheating,steady burning and extinguishing phase,during the flame evolution.The maximum temperature near the fuel surface is~1040 K,which is higher than that of flame plume(~600 K),in the steady burning phase of circle single pool fire(D=300 mm),while the average burning rate is~1.525 g/s.In addition,the burning rates of all cases were measured and compared with the current predicted method.Typically,the flame morphology of single/multiple pool fire at different cross wind speed(ranging from 0 to 3.5 m/s)was analyzed,and it is found that the results for single pool fire agree with Thomas model and AGA model well,which are not suitable for multiple pool fire.Finally,the temperature profile of different case was measured with various wind speed. 展开更多
关键词 pool fire temperature profile flame characteristic KEROSENE cross wind
原文传递
Flame Morphology and Characteristic of Co-Firing Ammonia with Pulverized Coal on a Flat Flame Burner
3
作者 WANG Shengye CUI Mingshuang +2 位作者 LIU Pengzhong DI Yi NIU Fang 《Journal of Thermal Science》 SCIE EI CAS 2024年第5期1935-1945,共11页
Ammonia as a new green carbon free fuel co-combustion with coal can effectively reduce CO_(2)emission,but the research of flame morphology and characteristics of ammonia-coal co-combustion are not enough.In this work,... Ammonia as a new green carbon free fuel co-combustion with coal can effectively reduce CO_(2)emission,but the research of flame morphology and characteristics of ammonia-coal co-combustion are not enough.In this work,we studied the co-combustion flame of NH_(3)and pulverized coal on flat flame burner under different oxygen mole fraction(X_(i,O_(2)))and NH_(3)co-firing energy ratios(E_(NH_(3))).We initially observed that the introduction of ammonia resulted in stratification within the ammonia-coal co-combustion flame,featuring a transparent flame at the root identified as the ammonia combustion zone.Due to challenges in visually observing the ignition of coal particles in the ammonia-coal co-combustion flame,we utilized Matlab software to analyze flame images across varying E_(NH_(3))and X_(i,O_(2)).The analysis indicates that,compared to pure coal combustion,the addition of ammonia advances the ignition delay time by 4.21 ms to 5.94 ms.As E_(NH_(3))increases,the ignition delay time initially decreases and then increases.Simultaneously,an increase in X_(i,O_(2))results in an earlier ignition delay time.The burn-off time and the flame divergence angle of pulverized coal demonstrated linear decreases and increases,respectively,with the growing ammonia ratio.The addition of ammonia facilitates the release of volatile matter from coal particles.However,in high-ammonia environments,oxygen consumption also impedes the surface reaction of coal particles.Finally,measurements of gas composition in the ammonia-coal flame flow field unveiled that the generated water-rich atmosphere intensified coal particle gasification,resulting in an elevated concentration of CO.Simultaneously,nitrogen-containing substances and coke produced during coal particle gasification underwent reduction reactions with NO_(x),leading to reduced NO_(x)emissions. 展开更多
关键词 co-firing ammonia with coal flame characteristic gas component ignition delay time burn-off time flame divergence angle flat flame burner flame morphology
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部