An experimental study investigated the characteristics of a stretched cylindrical diffusion flame, with a convex curvature with respect to the air stream, in response to periodic air flow velocity oscillation. The fue...An experimental study investigated the characteristics of a stretched cylindrical diffusion flame, with a convex curvature with respect to the air stream, in response to periodic air flow velocity oscillation. The fuel was methane diluted with nitrogen, and the oxidizer air. The oscillation frequency was varied from 5 to 250 Hz. The results are summarized as follows. Though the fluctuation amplitude of the air stream velocity gradient was constant with respect to the frequency, the amplitude of the fuel stream increased. The fluctuation amplitude of the flame radius changed quasi-steadily from 5 to 25 Hz, and decreased with increasing frequency in the frequency range greater than 50 Hz. The flame luminosity did not respond quasi-steadily at 5 Hz, and the oscillation amplitude of flame luminosity was less than that of a steady flame, over the same velocity fluctuation range. The oscillation amplitude of luminosity peaked at 50 Hz, and was greater than that of a steady flame. It is considered that this complex change in flame luminosity with respect to frequency was closely related to the phase difference in the respective time variations in the ratio of flame thickness to radius, the velocity gradients of the air and fuel streams, and the magnitude of these values, with the ratio of flame thickness to radius related to the flame curvature effect, the velocity gradient of the air stream correlated to the flame stretch effect, and the velocity gradient of the fuel stream impacting the fuel transportation.展开更多
Bunsen burner is a typical geometry for investigating the turbulence-flame interaction.In most experimental studies,only turbulence intensity u′and integral scale l0 are used to characterize the turbulent flow field,...Bunsen burner is a typical geometry for investigating the turbulence-flame interaction.In most experimental studies,only turbulence intensity u′and integral scale l0 are used to characterize the turbulent flow field,regardless of the perforation geometry of perforated plates.However,since the geometry influences the developing process and vortex broken,the plate geometry has to be considered when discussing the flame-turbulence interaction.In order to investigate conditions at the same l0 and u′using different geometries,large eddy simulation of CH_(4)/air flames with dynamic TF combustion model was performed.The model validation shows good agreement between Large Eddy Simulation(LES)and experimental results.In the non-reacting flows,the Vortex Stretching of circular-perforated plate condition is always larger than that of slot-perforated plate condition,which comes from the stresses in the flow fields to stretch the vorticity vector.In reacting flows,at the root of the flame,the Vortex Stretching plays a major role,and the total vorticity here of circular-perforated plate condition is still larger(53.8%and 300%larger than that of the slot-perforated plate at x/D=0 and x/D=2.5,respectively).More small-scale vortex in circular-perforated plate condition can affect and wrinkle the flame front to increase the Probability Density Function(PDF)at large curvatures.The 3D curvature distributions of both cases bias to negative values.The negative trend of curvatures at the instant flame front results from the Dilatation term.Also,the value of the Vortex Stretching and the Dilatation at the flame front of circular-perforated plate condition is obviously larger.展开更多
文摘An experimental study investigated the characteristics of a stretched cylindrical diffusion flame, with a convex curvature with respect to the air stream, in response to periodic air flow velocity oscillation. The fuel was methane diluted with nitrogen, and the oxidizer air. The oscillation frequency was varied from 5 to 250 Hz. The results are summarized as follows. Though the fluctuation amplitude of the air stream velocity gradient was constant with respect to the frequency, the amplitude of the fuel stream increased. The fluctuation amplitude of the flame radius changed quasi-steadily from 5 to 25 Hz, and decreased with increasing frequency in the frequency range greater than 50 Hz. The flame luminosity did not respond quasi-steadily at 5 Hz, and the oscillation amplitude of flame luminosity was less than that of a steady flame, over the same velocity fluctuation range. The oscillation amplitude of luminosity peaked at 50 Hz, and was greater than that of a steady flame. It is considered that this complex change in flame luminosity with respect to frequency was closely related to the phase difference in the respective time variations in the ratio of flame thickness to radius, the velocity gradients of the air and fuel streams, and the magnitude of these values, with the ratio of flame thickness to radius related to the flame curvature effect, the velocity gradient of the air stream correlated to the flame stretch effect, and the velocity gradient of the fuel stream impacting the fuel transportation.
基金supported by National Science and Technology Major Project(J2019-III-0014-0058)Natural Science Foundation of Science and Technology Department of Shaanxi Province(2022JQ-712)Scientific Research Program of Shaanxi Provincial Education Department(21JK0642)。
文摘Bunsen burner is a typical geometry for investigating the turbulence-flame interaction.In most experimental studies,only turbulence intensity u′and integral scale l0 are used to characterize the turbulent flow field,regardless of the perforation geometry of perforated plates.However,since the geometry influences the developing process and vortex broken,the plate geometry has to be considered when discussing the flame-turbulence interaction.In order to investigate conditions at the same l0 and u′using different geometries,large eddy simulation of CH_(4)/air flames with dynamic TF combustion model was performed.The model validation shows good agreement between Large Eddy Simulation(LES)and experimental results.In the non-reacting flows,the Vortex Stretching of circular-perforated plate condition is always larger than that of slot-perforated plate condition,which comes from the stresses in the flow fields to stretch the vorticity vector.In reacting flows,at the root of the flame,the Vortex Stretching plays a major role,and the total vorticity here of circular-perforated plate condition is still larger(53.8%and 300%larger than that of the slot-perforated plate at x/D=0 and x/D=2.5,respectively).More small-scale vortex in circular-perforated plate condition can affect and wrinkle the flame front to increase the Probability Density Function(PDF)at large curvatures.The 3D curvature distributions of both cases bias to negative values.The negative trend of curvatures at the instant flame front results from the Dilatation term.Also,the value of the Vortex Stretching and the Dilatation at the flame front of circular-perforated plate condition is obviously larger.