By using 6,6-((sulfonylbis(4,1-phenylene)bis(azanediyl))bis(thiophen-2-ylm-ethylene))bis6H-di-benzo[c,e][1,2]oxaphosphinine 6-oxide(DOPO-N)as phosphorus-nitrogen flame retardant,the polyurea(PUA)with flame retardant p...By using 6,6-((sulfonylbis(4,1-phenylene)bis(azanediyl))bis(thiophen-2-ylm-ethylene))bis6H-di-benzo[c,e][1,2]oxaphosphinine 6-oxide(DOPO-N)as phosphorus-nitrogen flame retardant,the polyurea(PUA)with flame retardant properties(PUA/DOPO-N)was prepared.In addition,organically modified montmorillonite(OMMT)and magnesium hydroxide(MH)were used as co-effectors respectively,and the flame retardant PUA(PUA/DOPO-N/OMMT and PUA/DOPO-N/MH)were also prepared.Thermal properties,flame retardant properties,flame retardant mechanism and mechanical properties of PUA/DOPO-N,PUA/DOPO-N/OMMT and PUA/DOPO-N/MH were investigated by thermogravimetric(TG)analysis,limiting oxygen index(LOI),UL 94,cone calorimeter test,scanning electron microscopy(SEM),and tensile test.The results show that the LOI value of PUA/20%DOPO-N,PUA/18%DOPO-N/2%OMMT and PUA/15%DOPO-N/5%MH are 27.1%,27.7%,and 28.3%,respectively,and UL 94 V-0 rating is attained.Compared with PUA,the peak heat release rate(pk-HRR),total heat release(THR)and average effective heat combustion(av-EHC)of PUA/20%DOPO-N,PUA/18%DOPO-N/2%OMMT and PUA/15%DOPO-N/5%MH decrease significantly.SEM results indicate that the residual chars of PUA/20%DOPO-N,PUA/18%DOPO-N/2%OMMT and PUA/15%DOPO-N/5%MH are completer and more compact.The complex of DOPO-N/OMMT and DOPO-N/MH have synergistic flame retardancy.The mechanical properties of PUA can be improved by the addition of DOPO-N,DOPO-N/OMMT and DOPO-N/MH,respectively.The insulation performance test shows that the volume resistivity of PUA/20%DOPO-N is 6.25×10^(16)Ω.cm.Furthermore,by using modified boron nitride(MBN)as heat dissipating material,the complex of PUA/MBN was prepared,and the thermal conductivity of PUA/MBN was investigated.The thermal conductivity of PUA/8%MBN complex coating at room temperature is 0.166 W/(M·K),which is a 163%improvement over pure PUA.展开更多
As a critical role in battery systems,polymer binders have been shown to efficiently suppress the lithium polysulfide shuttling and accommodate volume changes in recent years.However,preparation processes and safety,a...As a critical role in battery systems,polymer binders have been shown to efficiently suppress the lithium polysulfide shuttling and accommodate volume changes in recent years.However,preparation processes and safety,as the key criterions for Li-S batteries'practical applications,still attract less attention.Herein,an aqueous multifunction binder(named PEI-TIC)is prepared via an easy and fast epoxy-amine ring-opening reaction(10 min),which can not only give the sulfur cathode a stable mechanical property,a strong chemical adsorption and catalytic conversion ability,but also a fire safety improvement.The Li-S batteries based on the PEI-TIC binder display a high discharge capacity(1297.8 mAh g^(-1)),superior rate performance(823.0 mAh g^(-1)at 2 C),and an ultralow capacity decay rate of 0.035%over more than 800 cycles.Even under 7.1 mg cm^(-2)S-loaded,the PEI-TIC electrode can also achieve a high areal capacity of 7.2 mA h g^(-1)and excellent cycling stability,confirming its application potential.Moreover,it is also noted that TG-FTIR test is performed for the first time to explore the flame-retardant mechanism of polymer binders.This work provides an economically and environmentally friendly binder for the practical application and inspires the exploration of the flame-retardant mechanism of all electrode components.展开更多
Flame retardant coatings are functional materials that can serve as decorative and protec-tive substrates in the event of a fire.Flame retardant coatings generally consist of two parts:a base material and a flame reta...Flame retardant coatings are functional materials that can serve as decorative and protec-tive substrates in the event of a fire.Flame retardant coatings generally consist of two parts:a base material and a flame retardant agent.A detailed introduction was given to the development of flame retardant coatings in recent years and the flame retardants used in flame retardant coatings.Flame retardants mainly include halogen flame retar-dants,phosphorus nitrogen flame retardants,expansion flame retardants,biomass flame retardants,and graphene flame retardants.The application of flame retardant coatings in the fields of epoxy resin,polyurethane,etc.was elaborated.In addition,the application of new biomass flame retardants and graphene flame retardants was introduced,and the future development of flame retardant coatings and flame retardants was described.展开更多
To test the effectiveness of N_(2) and CO_(2) in preventing coal from spontaneously combusting,researchers used an adiabatic oxidation apparatus to conduct an experiment with different temperature starting points.Non-...To test the effectiveness of N_(2) and CO_(2) in preventing coal from spontaneously combusting,researchers used an adiabatic oxidation apparatus to conduct an experiment with different temperature starting points.Non-adsorbed helium(He)was used as a reference gas,and coal and oxygen concentration temperature variations were analyzed after inerting.The results showed that He had the best cooling effect,N_(2) was second,and CO_(2) was the worst.At 70℃and 110℃,the impact of different gases on reducing oxygen concentration and the cooling effect was the same.However,at the starting temperature of 150℃,CO_(2) was less effective in lowering oxygen concentration at the later stage than He and N_(2).N_(2) and CO_(2) can prolong the flame retardation time of inert gas and reduce oxygen displacement with an initial temperature increase.When the starting temperature is the same,N_(2) injection cools coal samples and replaces oxygen more effectively than CO_(2) injection.The flame retardancy of inert gas is the combined result of the cooling effect of inert gas and the replacement of oxygen.These findings are essential for using inert flame retardant technology in the goaf.展开更多
Polyamide 6 (PA6) was employed as a charring agent of intumescent flame retardant (IFR) to improve the flame retardancy of ethylene-vinyl acetate copolymer (EVA). Different processing procedures were used to regulate ...Polyamide 6 (PA6) was employed as a charring agent of intumescent flame retardant (IFR) to improve the flame retardancy of ethylene-vinyl acetate copolymer (EVA). Different processing procedures were used to regulate the localization of IFR in the EVA matrix. Localizations in which IFR was dispersed in the PA6phase or in the EVA phase were prepared. The effect of the localization of IFR on the flame retardancy of EVA was investigated. The limited oxygen index (LOI), vertical burning (UL 94) and cone calorimeter test (CCT)showed that the localization of IFR in the EVA matrix exhibited a remarkable influence on the flame retardancy.Compared with EVA/IFR, a weak improvement in the flame retardancy was observed in the EVA/PA6/IFR blend withthe localization of IFR in the PA6 phase. When IFR was regulated from the PA6 phase to the EVA matrix,a remarkable increase in the flame retardancy was exhibited. The LOI was increased from 27.8%to 32.7%, and the UL 94 vertical rating was increased from V-2 to V-0. Moreover, an approximately 41.36%decrease in the peak heat release rate was exhibited. A continuous and compact intumescent charring layer that formed in the blends with the localization of IFR in the EVA matrix should be responsible for its excellent flame retardancy.展开更多
Silicone rubber(SR)is widely used in the field of electronic packaging because of its low dielectric properties.In this work,the porosity of the SR was improved,and the dielectric constant of the SR foam was reduced b...Silicone rubber(SR)is widely used in the field of electronic packaging because of its low dielectric properties.In this work,the porosity of the SR was improved,and the dielectric constant of the SR foam was reduced by adding expanded microspheres(EM).Then,the thermal conductivity of the system was improved by combining the modified boron nitride(f-BN).The results showed that after the f-BN was added,the dielectric constant and dielectric loss were much lower than those of pure SR.Micron-sized modified boron nitride(f-mBN)improved the dielectric and thermal conductivity of the SR foam better than that of nano-sized modified boron nitride(f-nBN),but f-nBN improved the volume resistivity,tensile strength,and thermal stability of the SR better than f-mBN.When the mass ratio of f-mBN and fnBN is 2:1,the thermal conductivity of the SR foam reaches the maximum value of 0.808 W·m^(-1)·K^(-1),which is 6.5 times that before the addition.The heat release rate and fire growth index are the lowest,and the improvement in flame retardancy is mainly attributed to the high thermal stability and physical barrier of f-BN.展开更多
A novel method was developed to enhance the utilization rate of steel slag(SS).Through treatment of SS with phosphoric acid and aminopropyl triethoxysilane(KH550),we obtained modified SS(MSS),which was used to prepare...A novel method was developed to enhance the utilization rate of steel slag(SS).Through treatment of SS with phosphoric acid and aminopropyl triethoxysilane(KH550),we obtained modified SS(MSS),which was used to prepare MSS/wood-plastic composites(MSS/WPCs)by replacing talcum powder(TP).The composites were fabricated through melting blending and hot pressing.Their mechanical and combustion properties,which comprise heat release,smoke release,and thermal stability,were systematically investigated.MSS can improve the mechanical strength of the composites through grafting reactions between wood powder and thermoplastics.Notably,MSS/WPC#50(16wt%MSS)with an MSS-to-TP mass ratio of 1:1 exhibited optimal comprehensive performance.Compared with those of WPC#0 without MSS,the tensile,flexural,and impact strengths of MSS/WPC#50 were increased by 18.5%,12.8%,and 18.0%,respectively.Moreover,the MSS/WPC#50 sample achieved the highest limited oxygen index of 22.5%,the highest vertical burning rating at the V-1 level,and the lowest horizontal burning rate at 44.2 mm/min.The formation of a dense and stable char layer led to improved thermal stability and a considerable reduction in heat and smoke releases of MSS/WPC#50.However,the partial replacement of TP with MSS slightly compromised the mechanical and flame-retardant properties,possibly due to the weak grafting caused by SS powder agglomeration.These findings suggest the suitability of MSS/WPCs for high-value-added applications as decorative panels indoors or outdoors.展开更多
The conversion and storage of photothermal energy using phase change materials(PCMs)represent an optimal approach for harnessing clean and sustainable solar energy.Herein,we encapsulated polyethylene glycol(PEG)in mon...The conversion and storage of photothermal energy using phase change materials(PCMs)represent an optimal approach for harnessing clean and sustainable solar energy.Herein,we encapsulated polyethylene glycol(PEG)in montmorillonite aerogels(3D-Mt)through vacuum impregnation to prepare 3D-Mt/PEG composite PCMs.When used as a support matrix,3D-Mt can effectively prevent PEG leakage and act as a flame-retardant barrier to reduce the flammability of PEG.Simultaneously,3D-Mt/PEG demonstrates outstanding shape retention,increased thermal energy storage density,and commendable thermal and chemical stability.The phase transition enthalpy of 3D-Mt/PEG can reach 167.53 J/g and remains stable even after 50 heating-cooling cycles.Furthermore,the vertical sheet-like structure of 3D-Mt establishes directional heat transport channels,facilitating efficient phonon transfer.This configuration results in highly anisotropic thermal conductivities that ensure swift thermal responses and efficient heat conduction.This study addresses the shortcomings of PCMs,including the issues of leakage and inadequate flame retardancy.It achieves the development and design of 3D-Mt/PEG with ultrahigh strength,superior flame retardancy,and directional heat transfer.Therefore,this work offers a design strategy for the preparation of high-performance composite PCMs.The 3D-Mt/PEG with vertically aligned and well-ordered array structure developed in this research shows great potential for thermal management and photothermal conversion applications.展开更多
Polyurethane/polyhedral oligomeric sisesquioxane (PU/POSS) nanocomposites were syn- thesized via polymerization utilizing the compatibility between POSS nanopartieles and 4J-diphenyl methylene diisocyanate. Scanning...Polyurethane/polyhedral oligomeric sisesquioxane (PU/POSS) nanocomposites were syn- thesized via polymerization utilizing the compatibility between POSS nanopartieles and 4J-diphenyl methylene diisocyanate. Scanning electron microscope images and Fourier transform infrared spectra revealed that POSS nanoparticles were dispersed in PU matrix. Thermal gravimetric analysis was employed to investigate the thermal decomposition be- havior of PU/POSS nanocomposites at elevated temperatures. Then fire performance was evaluated by limiting oxygen index, underwriters laboratories 94 testing and char residue morphology. These results showed that the addition of POSS promoted the formation of char residues which were covered on the surface of polymer composites, leading to the ira-provement of thermal stability and flame retardancy.展开更多
PI novel caged bicyclic phosphate flame retardant tri(1-oxo-2,6,7-trioxa-1-phosphabicyclo [2.2.2] octane-methyl) phosphate (Trimer) was synthesized from 1-oxo-4-hydroxymethyl-2,6,7-trioxa-1-phosphabicyclo [2.2.2] octa...PI novel caged bicyclic phosphate flame retardant tri(1-oxo-2,6,7-trioxa-1-phosphabicyclo [2.2.2] octane-methyl) phosphate (Trimer) was synthesized from 1-oxo-4-hydroxymethyl-2,6,7-trioxa-1-phosphabicyclo [2.2.2] octane (PEPA) and phosphorus oxychloride in this paper. Its structure was characterized by elemental analysis. FTIR, H-1 NMR. P-31 NMR and X-ray diffraction analysis.展开更多
The effect of Ti3C2 MXene nanosheets on the intumescent flame retardant(IFR)poly(lactic acid)(PLA)composites was investigated among a series of PLA/IFR/MXene,which were prepared by melt blending 0-2.0 wt%MXene,10.0 wt...The effect of Ti3C2 MXene nanosheets on the intumescent flame retardant(IFR)poly(lactic acid)(PLA)composites was investigated among a series of PLA/IFR/MXene,which were prepared by melt blending 0-2.0 wt%MXene,10.0 wt%-12.0 wt%IFR and PLA together.The results of limiting oxygen index(LOI)and vertical burning(UL-94)discover that the combination of 0.5 wt%MXene and 11.5 wt%IFR synergistically improves the fire safety of PLA to reach UL-94 V-0 rating with LOI value of 33.0%.The PLA/IFR/MXene composites perform an obvious reduction in peak of heat release rate(HRR)in cone calorimeter tests(CCTs).Furthermore,the carbon residues after CCTs were characterized by scanning electron microscope(SEM),laser Raman spectroscopy(LRS),X-ray diffraction(XRD)and X-ray photoelectron spectroscopy(XPS).It is demonstrated that both the titanium composition of the MXene structure and the characteristics of the two-dimensional material enhance the PLA/IFR/MXene composite materials’ability to produce a dense barrier layer to resist burnout during thermal degradation.展开更多
The synergistic effect of conventional flame-retardant elements and graphene has received extensive attention in the development of a new class of flame retardants. Compared to covalent modification, the noncovalent s...The synergistic effect of conventional flame-retardant elements and graphene has received extensive attention in the development of a new class of flame retardants. Compared to covalent modification, the noncovalent strategy is simpler and expeditious and entirely preserves the original quality of graphene. Thus, non-covalently functionalized graphene oxide(FGO) with a phosphorus–nitrogen compound was successfully prepared via a one-pot process in this study. Polyethyleneimine and FGO were alternatively deposited on the surface of a poly(vinyl alcohol)(PVA) film via layer-by-layer assembly driven by electrostatic interaction, imparting excellent flame retardancy to the coated PVA film. The multilayer FGO-based coating formed a protective shield encapsulating the PVA matrix, effectively blocking the transfer of heat and mass during combustion. The coated PVA has a higher initial decomposition temperature of about 260 °C and a nearly 60% reduction in total heat release than neat PVA does. Our results may have a promising prospect for flame-retardant polymers.展开更多
A novel phosphorus-nitrogen containing intumescent flame retardant (P-N IFR) was prepared via the reaction of dichlor-opentate with N-methylaniline. The structure of the product was confirmed by ^1H NMR, ^31p NMR, M...A novel phosphorus-nitrogen containing intumescent flame retardant (P-N IFR) was prepared via the reaction of dichlor-opentate with N-methylaniline. The structure of the product was confirmed by ^1H NMR, ^31p NMR, MS and IR. TGA analysis showed it has effective thermal stability.展开更多
The synergistic effects of silicotungstic acid (SiW12) as a catalyst in the phosphorus-nitrogen compounds AM-based intumescent flame-retardant (IFR) polypropylene (PP) were studied using the limiting oxygen index (LOI...The synergistic effects of silicotungstic acid (SiW12) as a catalyst in the phosphorus-nitrogen compounds AM-based intumescent flame-retardant (IFR) polypropylene (PP) were studied using the limiting oxygen index (LOI), the UL-94 test, thermogravimetric analysis (TGA), real time Fourier transform infrared (FTIR), laser Raman spectroscopy (LRS). The LOI data show that SiW12 added to PP/IFR systems has a synergistic FR effect with an IFR additive named AM. The TGA data show that SiW12 apparently increases the thermal stability of the PP/IFR systems at high temperature (T > 500degreesC). The FTIR results provide the positive evidence that IFR can improve the thermal stability of PP and SiW12 can induce a higher rate of formation of phosphoric acid and its derivatives. The LRS measurements provide useful information on the carbonaceous microstructures. In short, a suitable amount of SiW12 (1.5 wt%) exerts synergistic effects with the IFR by increasing the LOI value and the thermal stability at high temperature and promoting the formation of charred structures on the burning PP surface.展开更多
The preparation technology of flame-retardant PC/ABS alloys was studied in this paper. Using a high-efficiency flame retardant system and by means of multiple-ingredient compatibilizing, PC/ABS alloys with excellent i...The preparation technology of flame-retardant PC/ABS alloys was studied in this paper. Using a high-efficiency flame retardant system and by means of multiple-ingredient compatibilizing, PC/ABS alloys with excellent impact strength and flame retardant property were prepared. The experimental results showed that by using PS-g-MAH and SMA as synergistic compatibilizers, the notched Izod impact strength and flammability of PC/ABS alloy obtained in the present work can be up to 175 J/m and UL-94 VO, respectively.展开更多
A flame retardant (DPA-SiN) containing phosphorus, nitrogen and silicon elements was synthesized. The halogen free flame retardant was incorporated into PC/ABS to improve its flame retardancy. The flame-retardant pr...A flame retardant (DPA-SiN) containing phosphorus, nitrogen and silicon elements was synthesized. The halogen free flame retardant was incorporated into PC/ABS to improve its flame retardancy. The flame-retardant properties of the PC/ABS/DPA-SiN blends were estimated by limiting oxygen index (LOI) values and CONE Calorimeter, while thermal stabilities were investi- gated through thermo gvavimetric analysis (TGA). The PC/ABS/DPA-SiN blends were thermally degraded at 400℃ for different amounts of time and studied by Fourier transform infrared spectroscopy (FTIR) to better understand the degradation behavior of PC/ABS/DPA-SiN.展开更多
In order to improve the efficiency of β-CD,the inclusion complex of β-CD and resorcinol bisdiphenylphosphate (RDP) (β-CD@RDP) was prepared,which β-CD was as the host component and RDP was as the guest.The structur...In order to improve the efficiency of β-CD,the inclusion complex of β-CD and resorcinol bisdiphenylphosphate (RDP) (β-CD@RDP) was prepared,which β-CD was as the host component and RDP was as the guest.The structure and thermal stability property of β-CD@RDP was also characterized.EP/β-CD@RDP composites were prepared by adding β-CD@RDP into EP matrix.The results of thermogravimetric test showed that the flame retardant systems could effectively increase the corresponding temperature of EP matrix to reach the maximum thermal decomposition rate,and exhibited good char-forming property.When the amount of β-CD@RDP in EP was 20wt%,the limiting oxygen index (LOI) value of EP was increased to 26.5% from 19.8%,and the vertical burning test (UL-94) reached V-1 level.The cone calorimeter test indicated that 20wt% loading in EP could reduce the peak of heat release rate (PHRR) and the total heat release (THR) of EP by 94.7% and 93.4% respectively,and the peak of smoke production rate (PSPR) and the total smoke production (TSP) was reduced by 16.7% and 22.2%,respectively.Therefore,the addition of β-CD@RDP could reduce the fire risk of EP effectively.展开更多
Polyvinyl alcohol (PVA) has been widely used in the fields of medical, food and packaging due to its excellentbiocompatibility, good fiber-forming and film-forming properties. However, the high flammability of PVA has...Polyvinyl alcohol (PVA) has been widely used in the fields of medical, food and packaging due to its excellentbiocompatibility, good fiber-forming and film-forming properties. However, the high flammability of PVA hasgreatly limited its wider applications. The flame-retardant PVA was prepared by melt blending of a bio-basedflame retardant (prepared from lignin, phosphoric acid and carbamide) with thermoplastic PVA (TPVA). Thechemical structure, morphology, thermal properties, mechanical properties, fire property and fluidity of thisflame retardant PVA were investigated by Fourier transform infrared spectrometer(FTIR), field emission scanning electron microscope(SEM), thermogravimetric analyzer(TGA), impact tester, universal testing machine,horizontal-vertical burning tester, limiting oxygen indexer(LOI) and melt flow rate meter(MFR). The resultsshowed that the prepared flame retardant had good compatibility with the PVA substrate;The impact strength,melt flow rate, fire property and char residue of this PVA material increased with the content of bio-based flameretardant. When the content of flame retardant was of 20%, the five indices including impact strength, meltflow rate, UL-94 level, LOI and char residual were 11.3 KJ/m^(2), 21.2 g/10 min, V-0 UL-94 level, 33.1%, and19.2%, respectively. This research can promote the high-value utilization of lignin and the application ofPVA in the fields of fire protection.展开更多
A series of wear and flame resistant polyamide 6(PA6)composites were prepared using glass fiber(GF)and talc(T)as reinforcer,polytetrafluoroethylene(PTFE)and graphite(Gr)as solid lubricants,red phosphorus(RP)and zinc b...A series of wear and flame resistant polyamide 6(PA6)composites were prepared using glass fiber(GF)and talc(T)as reinforcer,polytetrafluoroethylene(PTFE)and graphite(Gr)as solid lubricants,red phosphorus(RP)and zinc borate(ZB)as flame retardant.The tribological property,mechanical property,flame retardant property and the flame retardant mechanism were investigated.The tests show that the formula of the wear resistant PA6 composite(WRPA 6)is PA6/GF/T/PTFE/Gr in the ratio of 100/15/5/10/5 by mass.Because this composite exhibits the lowest friction coefficient(0.1429)and no wear mass loss,the introduction of RP and ZB can increase the flame resistance of WRPA6,and the synergistic effect of RP and ZB is obtained.Detailedly,the composite with 4 parts of ZB and 12 parts of RP shows the best flame retardant property,achieving the highest limiting oxygen index(LOI)(30.2 vol%)and a UL94 V-0 rating,and the flame retardant mechanisms may be gas phase along with condense phase mechanism.展开更多
To improve the flame resistance of polypropylene(PP)/carbon fiber(CF)composite materials,triazine char-forming agent(TCA)was compounded with ammonium polyphosphate(APP)or modified APP(CS-APP)in a 2:1 ratio to prepare ...To improve the flame resistance of polypropylene(PP)/carbon fiber(CF)composite materials,triazine char-forming agent(TCA)was compounded with ammonium polyphosphate(APP)or modified APP(CS-APP)in a 2:1 ratio to prepare intumescent flame retardant(IFR)and the modified intumescent flame retardant(CS-IFR)in this paper.Flame retardancy and thermal degradation behaviors of the composites modified by IFR and CS-IFR were characterized by Fourier Transform Infrared(FTIR),contact angle measurement,oxygen index(OI),vertical burning tests(UL-94),thermogravimetric analyer(TGA),and thermogravimetric analyzer coupled with Fourier transform infrared(TG-FTIR).It was found that 25.0 phr of IFR and 24.0 phr of CS-IFR could improve the LOI value of PP/CF composites to 28.3%and 28.9%,respectively.At the same time,a UL-94 V-0 rating was achieved.The experimental results show that the IFR and CS-IFR prepared could effectively improve the flame retardancy and thermostability of PP/CF composites,and they would greatly expand the application range of PP/CF composite materials.展开更多
基金Funded by the Natural Science Foundation of Guangdong(Nos.2014A030313241,2014B090901068,and 2016A010103003)。
文摘By using 6,6-((sulfonylbis(4,1-phenylene)bis(azanediyl))bis(thiophen-2-ylm-ethylene))bis6H-di-benzo[c,e][1,2]oxaphosphinine 6-oxide(DOPO-N)as phosphorus-nitrogen flame retardant,the polyurea(PUA)with flame retardant properties(PUA/DOPO-N)was prepared.In addition,organically modified montmorillonite(OMMT)and magnesium hydroxide(MH)were used as co-effectors respectively,and the flame retardant PUA(PUA/DOPO-N/OMMT and PUA/DOPO-N/MH)were also prepared.Thermal properties,flame retardant properties,flame retardant mechanism and mechanical properties of PUA/DOPO-N,PUA/DOPO-N/OMMT and PUA/DOPO-N/MH were investigated by thermogravimetric(TG)analysis,limiting oxygen index(LOI),UL 94,cone calorimeter test,scanning electron microscopy(SEM),and tensile test.The results show that the LOI value of PUA/20%DOPO-N,PUA/18%DOPO-N/2%OMMT and PUA/15%DOPO-N/5%MH are 27.1%,27.7%,and 28.3%,respectively,and UL 94 V-0 rating is attained.Compared with PUA,the peak heat release rate(pk-HRR),total heat release(THR)and average effective heat combustion(av-EHC)of PUA/20%DOPO-N,PUA/18%DOPO-N/2%OMMT and PUA/15%DOPO-N/5%MH decrease significantly.SEM results indicate that the residual chars of PUA/20%DOPO-N,PUA/18%DOPO-N/2%OMMT and PUA/15%DOPO-N/5%MH are completer and more compact.The complex of DOPO-N/OMMT and DOPO-N/MH have synergistic flame retardancy.The mechanical properties of PUA can be improved by the addition of DOPO-N,DOPO-N/OMMT and DOPO-N/MH,respectively.The insulation performance test shows that the volume resistivity of PUA/20%DOPO-N is 6.25×10^(16)Ω.cm.Furthermore,by using modified boron nitride(MBN)as heat dissipating material,the complex of PUA/MBN was prepared,and the thermal conductivity of PUA/MBN was investigated.The thermal conductivity of PUA/8%MBN complex coating at room temperature is 0.166 W/(M·K),which is a 163%improvement over pure PUA.
基金the support from National Outstanding Youth Science Fund Project of National Natural Science Foundation of China(52222314)CNPC Innovation Fund(2021DQ02-1001)+2 种基金Liao Ning Revitalization Talents Program(XLYC1907144)Xinghai Talent Cultivation Plan(X20200303)Fundamental Research Funds for the Central Universities(DUT22JC02,DUT22LAB605)
文摘As a critical role in battery systems,polymer binders have been shown to efficiently suppress the lithium polysulfide shuttling and accommodate volume changes in recent years.However,preparation processes and safety,as the key criterions for Li-S batteries'practical applications,still attract less attention.Herein,an aqueous multifunction binder(named PEI-TIC)is prepared via an easy and fast epoxy-amine ring-opening reaction(10 min),which can not only give the sulfur cathode a stable mechanical property,a strong chemical adsorption and catalytic conversion ability,but also a fire safety improvement.The Li-S batteries based on the PEI-TIC binder display a high discharge capacity(1297.8 mAh g^(-1)),superior rate performance(823.0 mAh g^(-1)at 2 C),and an ultralow capacity decay rate of 0.035%over more than 800 cycles.Even under 7.1 mg cm^(-2)S-loaded,the PEI-TIC electrode can also achieve a high areal capacity of 7.2 mA h g^(-1)and excellent cycling stability,confirming its application potential.Moreover,it is also noted that TG-FTIR test is performed for the first time to explore the flame-retardant mechanism of polymer binders.This work provides an economically and environmentally friendly binder for the practical application and inspires the exploration of the flame-retardant mechanism of all electrode components.
文摘Flame retardant coatings are functional materials that can serve as decorative and protec-tive substrates in the event of a fire.Flame retardant coatings generally consist of two parts:a base material and a flame retardant agent.A detailed introduction was given to the development of flame retardant coatings in recent years and the flame retardants used in flame retardant coatings.Flame retardants mainly include halogen flame retar-dants,phosphorus nitrogen flame retardants,expansion flame retardants,biomass flame retardants,and graphene flame retardants.The application of flame retardant coatings in the fields of epoxy resin,polyurethane,etc.was elaborated.In addition,the application of new biomass flame retardants and graphene flame retardants was introduced,and the future development of flame retardant coatings and flame retardants was described.
基金support was received from the National Natural Science Foundation of China(52074156).
文摘To test the effectiveness of N_(2) and CO_(2) in preventing coal from spontaneously combusting,researchers used an adiabatic oxidation apparatus to conduct an experiment with different temperature starting points.Non-adsorbed helium(He)was used as a reference gas,and coal and oxygen concentration temperature variations were analyzed after inerting.The results showed that He had the best cooling effect,N_(2) was second,and CO_(2) was the worst.At 70℃and 110℃,the impact of different gases on reducing oxygen concentration and the cooling effect was the same.However,at the starting temperature of 150℃,CO_(2) was less effective in lowering oxygen concentration at the later stage than He and N_(2).N_(2) and CO_(2) can prolong the flame retardation time of inert gas and reduce oxygen displacement with an initial temperature increase.When the starting temperature is the same,N_(2) injection cools coal samples and replaces oxygen more effectively than CO_(2) injection.The flame retardancy of inert gas is the combined result of the cooling effect of inert gas and the replacement of oxygen.These findings are essential for using inert flame retardant technology in the goaf.
基金the National Natural Science Foundation of China (No.51673059)the Science and Technology Planning Project of Henan Province (No. 212102210636)the Opening Project of Jiangxi Province Key Laboratory of Polymer Micro/Nano Manufacturing and Devices (East China University of Technology)。
文摘Polyamide 6 (PA6) was employed as a charring agent of intumescent flame retardant (IFR) to improve the flame retardancy of ethylene-vinyl acetate copolymer (EVA). Different processing procedures were used to regulate the localization of IFR in the EVA matrix. Localizations in which IFR was dispersed in the PA6phase or in the EVA phase were prepared. The effect of the localization of IFR on the flame retardancy of EVA was investigated. The limited oxygen index (LOI), vertical burning (UL 94) and cone calorimeter test (CCT)showed that the localization of IFR in the EVA matrix exhibited a remarkable influence on the flame retardancy.Compared with EVA/IFR, a weak improvement in the flame retardancy was observed in the EVA/PA6/IFR blend withthe localization of IFR in the PA6 phase. When IFR was regulated from the PA6 phase to the EVA matrix,a remarkable increase in the flame retardancy was exhibited. The LOI was increased from 27.8%to 32.7%, and the UL 94 vertical rating was increased from V-2 to V-0. Moreover, an approximately 41.36%decrease in the peak heat release rate was exhibited. A continuous and compact intumescent charring layer that formed in the blends with the localization of IFR in the EVA matrix should be responsible for its excellent flame retardancy.
基金supported by the Natural Science Foundation of Anhui Province(2108085QE211)National Natural Science Foundation of China(22205229)Science Foundation of China University of Petroleum,Beijing(2462024QNXZ001).
文摘Silicone rubber(SR)is widely used in the field of electronic packaging because of its low dielectric properties.In this work,the porosity of the SR was improved,and the dielectric constant of the SR foam was reduced by adding expanded microspheres(EM).Then,the thermal conductivity of the system was improved by combining the modified boron nitride(f-BN).The results showed that after the f-BN was added,the dielectric constant and dielectric loss were much lower than those of pure SR.Micron-sized modified boron nitride(f-mBN)improved the dielectric and thermal conductivity of the SR foam better than that of nano-sized modified boron nitride(f-nBN),but f-nBN improved the volume resistivity,tensile strength,and thermal stability of the SR better than f-mBN.When the mass ratio of f-mBN and fnBN is 2:1,the thermal conductivity of the SR foam reaches the maximum value of 0.808 W·m^(-1)·K^(-1),which is 6.5 times that before the addition.The heat release rate and fire growth index are the lowest,and the improvement in flame retardancy is mainly attributed to the high thermal stability and physical barrier of f-BN.
基金financially supported from the National Natural Science Foundation of China(No.U23A20605)the University Synergy Innovation Program of Anhui Province,China(No.GXXT-2020-072)+2 种基金Anhui Jieqing Project,China(No.2208085J19)Anhui Graduate Innovation and Entrepreneurship Practice Project,China(No.2022cxcysj090)China Baowu Low Carbon Metallurgy Innovation Foundation(No.BWLCF202202).
文摘A novel method was developed to enhance the utilization rate of steel slag(SS).Through treatment of SS with phosphoric acid and aminopropyl triethoxysilane(KH550),we obtained modified SS(MSS),which was used to prepare MSS/wood-plastic composites(MSS/WPCs)by replacing talcum powder(TP).The composites were fabricated through melting blending and hot pressing.Their mechanical and combustion properties,which comprise heat release,smoke release,and thermal stability,were systematically investigated.MSS can improve the mechanical strength of the composites through grafting reactions between wood powder and thermoplastics.Notably,MSS/WPC#50(16wt%MSS)with an MSS-to-TP mass ratio of 1:1 exhibited optimal comprehensive performance.Compared with those of WPC#0 without MSS,the tensile,flexural,and impact strengths of MSS/WPC#50 were increased by 18.5%,12.8%,and 18.0%,respectively.Moreover,the MSS/WPC#50 sample achieved the highest limited oxygen index of 22.5%,the highest vertical burning rating at the V-1 level,and the lowest horizontal burning rate at 44.2 mm/min.The formation of a dense and stable char layer led to improved thermal stability and a considerable reduction in heat and smoke releases of MSS/WPC#50.However,the partial replacement of TP with MSS slightly compromised the mechanical and flame-retardant properties,possibly due to the weak grafting caused by SS powder agglomeration.These findings suggest the suitability of MSS/WPCs for high-value-added applications as decorative panels indoors or outdoors.
基金supported by the National Natural Science Foundation of China(No.52104265)。
文摘The conversion and storage of photothermal energy using phase change materials(PCMs)represent an optimal approach for harnessing clean and sustainable solar energy.Herein,we encapsulated polyethylene glycol(PEG)in montmorillonite aerogels(3D-Mt)through vacuum impregnation to prepare 3D-Mt/PEG composite PCMs.When used as a support matrix,3D-Mt can effectively prevent PEG leakage and act as a flame-retardant barrier to reduce the flammability of PEG.Simultaneously,3D-Mt/PEG demonstrates outstanding shape retention,increased thermal energy storage density,and commendable thermal and chemical stability.The phase transition enthalpy of 3D-Mt/PEG can reach 167.53 J/g and remains stable even after 50 heating-cooling cycles.Furthermore,the vertical sheet-like structure of 3D-Mt establishes directional heat transport channels,facilitating efficient phonon transfer.This configuration results in highly anisotropic thermal conductivities that ensure swift thermal responses and efficient heat conduction.This study addresses the shortcomings of PCMs,including the issues of leakage and inadequate flame retardancy.It achieves the development and design of 3D-Mt/PEG with ultrahigh strength,superior flame retardancy,and directional heat transfer.Therefore,this work offers a design strategy for the preparation of high-performance composite PCMs.The 3D-Mt/PEG with vertically aligned and well-ordered array structure developed in this research shows great potential for thermal management and photothermal conversion applications.
文摘Polyurethane/polyhedral oligomeric sisesquioxane (PU/POSS) nanocomposites were syn- thesized via polymerization utilizing the compatibility between POSS nanopartieles and 4J-diphenyl methylene diisocyanate. Scanning electron microscope images and Fourier transform infrared spectra revealed that POSS nanoparticles were dispersed in PU matrix. Thermal gravimetric analysis was employed to investigate the thermal decomposition be- havior of PU/POSS nanocomposites at elevated temperatures. Then fire performance was evaluated by limiting oxygen index, underwriters laboratories 94 testing and char residue morphology. These results showed that the addition of POSS promoted the formation of char residues which were covered on the surface of polymer composites, leading to the ira-provement of thermal stability and flame retardancy.
文摘PI novel caged bicyclic phosphate flame retardant tri(1-oxo-2,6,7-trioxa-1-phosphabicyclo [2.2.2] octane-methyl) phosphate (Trimer) was synthesized from 1-oxo-4-hydroxymethyl-2,6,7-trioxa-1-phosphabicyclo [2.2.2] octane (PEPA) and phosphorus oxychloride in this paper. Its structure was characterized by elemental analysis. FTIR, H-1 NMR. P-31 NMR and X-ray diffraction analysis.
基金support from the National Natural Science Foundation of China(Grant Nos.21908031 and 51903092)the China Postdoctoral Science Foundation funded project(Grant No.2019M652884)support from Guangdong Special Support Program(Grant No.2017TX04N371)。
文摘The effect of Ti3C2 MXene nanosheets on the intumescent flame retardant(IFR)poly(lactic acid)(PLA)composites was investigated among a series of PLA/IFR/MXene,which were prepared by melt blending 0-2.0 wt%MXene,10.0 wt%-12.0 wt%IFR and PLA together.The results of limiting oxygen index(LOI)and vertical burning(UL-94)discover that the combination of 0.5 wt%MXene and 11.5 wt%IFR synergistically improves the fire safety of PLA to reach UL-94 V-0 rating with LOI value of 33.0%.The PLA/IFR/MXene composites perform an obvious reduction in peak of heat release rate(HRR)in cone calorimeter tests(CCTs).Furthermore,the carbon residues after CCTs were characterized by scanning electron microscope(SEM),laser Raman spectroscopy(LRS),X-ray diffraction(XRD)and X-ray photoelectron spectroscopy(XPS).It is demonstrated that both the titanium composition of the MXene structure and the characteristics of the two-dimensional material enhance the PLA/IFR/MXene composite materials’ability to produce a dense barrier layer to resist burnout during thermal degradation.
基金supported by National Natural Science Foundation of China (No. 51473095)the Program of Innovative Research Team for Young Scientists of Sichuan Province (2016TD0010)
文摘The synergistic effect of conventional flame-retardant elements and graphene has received extensive attention in the development of a new class of flame retardants. Compared to covalent modification, the noncovalent strategy is simpler and expeditious and entirely preserves the original quality of graphene. Thus, non-covalently functionalized graphene oxide(FGO) with a phosphorus–nitrogen compound was successfully prepared via a one-pot process in this study. Polyethyleneimine and FGO were alternatively deposited on the surface of a poly(vinyl alcohol)(PVA) film via layer-by-layer assembly driven by electrostatic interaction, imparting excellent flame retardancy to the coated PVA film. The multilayer FGO-based coating formed a protective shield encapsulating the PVA matrix, effectively blocking the transfer of heat and mass during combustion. The coated PVA has a higher initial decomposition temperature of about 260 °C and a nearly 60% reduction in total heat release than neat PVA does. Our results may have a promising prospect for flame-retardant polymers.
文摘A novel phosphorus-nitrogen containing intumescent flame retardant (P-N IFR) was prepared via the reaction of dichlor-opentate with N-methylaniline. The structure of the product was confirmed by ^1H NMR, ^31p NMR, MS and IR. TGA analysis showed it has effective thermal stability.
基金This work was supported by a grant from the Knowledge-Creating Engineering Fund of the Chinese Academy of Science.
文摘The synergistic effects of silicotungstic acid (SiW12) as a catalyst in the phosphorus-nitrogen compounds AM-based intumescent flame-retardant (IFR) polypropylene (PP) were studied using the limiting oxygen index (LOI), the UL-94 test, thermogravimetric analysis (TGA), real time Fourier transform infrared (FTIR), laser Raman spectroscopy (LRS). The LOI data show that SiW12 added to PP/IFR systems has a synergistic FR effect with an IFR additive named AM. The TGA data show that SiW12 apparently increases the thermal stability of the PP/IFR systems at high temperature (T > 500degreesC). The FTIR results provide the positive evidence that IFR can improve the thermal stability of PP and SiW12 can induce a higher rate of formation of phosphoric acid and its derivatives. The LRS measurements provide useful information on the carbonaceous microstructures. In short, a suitable amount of SiW12 (1.5 wt%) exerts synergistic effects with the IFR by increasing the LOI value and the thermal stability at high temperature and promoting the formation of charred structures on the burning PP surface.
文摘The preparation technology of flame-retardant PC/ABS alloys was studied in this paper. Using a high-efficiency flame retardant system and by means of multiple-ingredient compatibilizing, PC/ABS alloys with excellent impact strength and flame retardant property were prepared. The experimental results showed that by using PS-g-MAH and SMA as synergistic compatibilizers, the notched Izod impact strength and flammability of PC/ABS alloy obtained in the present work can be up to 175 J/m and UL-94 VO, respectively.
基金Funded by Shanghai Science and Technology Commission of China (No.05dz22303)
文摘A flame retardant (DPA-SiN) containing phosphorus, nitrogen and silicon elements was synthesized. The halogen free flame retardant was incorporated into PC/ABS to improve its flame retardancy. The flame-retardant properties of the PC/ABS/DPA-SiN blends were estimated by limiting oxygen index (LOI) values and CONE Calorimeter, while thermal stabilities were investi- gated through thermo gvavimetric analysis (TGA). The PC/ABS/DPA-SiN blends were thermally degraded at 400℃ for different amounts of time and studied by Fourier transform infrared spectroscopy (FTIR) to better understand the degradation behavior of PC/ABS/DPA-SiN.
基金the Open Project of State Key Laboratory of Fire Science,University of Science and Technology of China(No.HZ2018-KF02)the Science and Technology Project of Changzhou(No. CJ20190047)the National Natural Science Foundation of China(No. 51574046)。
文摘In order to improve the efficiency of β-CD,the inclusion complex of β-CD and resorcinol bisdiphenylphosphate (RDP) (β-CD@RDP) was prepared,which β-CD was as the host component and RDP was as the guest.The structure and thermal stability property of β-CD@RDP was also characterized.EP/β-CD@RDP composites were prepared by adding β-CD@RDP into EP matrix.The results of thermogravimetric test showed that the flame retardant systems could effectively increase the corresponding temperature of EP matrix to reach the maximum thermal decomposition rate,and exhibited good char-forming property.When the amount of β-CD@RDP in EP was 20wt%,the limiting oxygen index (LOI) value of EP was increased to 26.5% from 19.8%,and the vertical burning test (UL-94) reached V-1 level.The cone calorimeter test indicated that 20wt% loading in EP could reduce the peak of heat release rate (PHRR) and the total heat release (THR) of EP by 94.7% and 93.4% respectively,and the peak of smoke production rate (PSPR) and the total smoke production (TSP) was reduced by 16.7% and 22.2%,respectively.Therefore,the addition of β-CD@RDP could reduce the fire risk of EP effectively.
基金This work was financially supported by the following funds:National Natural Science Foundation of China(51803055)Hunan Provincial Natural Foundation of China(2019JJ50472)+5 种基金Scientific Research Fund of Hunan Provincial Education Department of China(18C0979,19A391)Opening Fund of National&Local Joint Engineering Laboratory for New Petro-chemical Materials and Fine Utilization of Resources(KF201802)Hunan Province Key Field R&D Program Project(2019GK2246)Key Scientific Research Project of Huaihua University(HHUY2019-04)Hunan Provincial Key Research and Development Program(2018GK2062)Science and Technology Plan Project of Huaihua City(2020R3101).
文摘Polyvinyl alcohol (PVA) has been widely used in the fields of medical, food and packaging due to its excellentbiocompatibility, good fiber-forming and film-forming properties. However, the high flammability of PVA hasgreatly limited its wider applications. The flame-retardant PVA was prepared by melt blending of a bio-basedflame retardant (prepared from lignin, phosphoric acid and carbamide) with thermoplastic PVA (TPVA). Thechemical structure, morphology, thermal properties, mechanical properties, fire property and fluidity of thisflame retardant PVA were investigated by Fourier transform infrared spectrometer(FTIR), field emission scanning electron microscope(SEM), thermogravimetric analyzer(TGA), impact tester, universal testing machine,horizontal-vertical burning tester, limiting oxygen indexer(LOI) and melt flow rate meter(MFR). The resultsshowed that the prepared flame retardant had good compatibility with the PVA substrate;The impact strength,melt flow rate, fire property and char residue of this PVA material increased with the content of bio-based flameretardant. When the content of flame retardant was of 20%, the five indices including impact strength, meltflow rate, UL-94 level, LOI and char residual were 11.3 KJ/m^(2), 21.2 g/10 min, V-0 UL-94 level, 33.1%, and19.2%, respectively. This research can promote the high-value utilization of lignin and the application ofPVA in the fields of fire protection.
基金Project(149929)supported by the Postdoctoral Fund of Central South University,ChinaProject(16C0292)supported by the Hunan Education Department,ChinaProject(2016TP1022)supported by the Hunan Provincial Key Lab of Dark Tea and Jin-hua,China
文摘A series of wear and flame resistant polyamide 6(PA6)composites were prepared using glass fiber(GF)and talc(T)as reinforcer,polytetrafluoroethylene(PTFE)and graphite(Gr)as solid lubricants,red phosphorus(RP)and zinc borate(ZB)as flame retardant.The tribological property,mechanical property,flame retardant property and the flame retardant mechanism were investigated.The tests show that the formula of the wear resistant PA6 composite(WRPA 6)is PA6/GF/T/PTFE/Gr in the ratio of 100/15/5/10/5 by mass.Because this composite exhibits the lowest friction coefficient(0.1429)and no wear mass loss,the introduction of RP and ZB can increase the flame resistance of WRPA6,and the synergistic effect of RP and ZB is obtained.Detailedly,the composite with 4 parts of ZB and 12 parts of RP shows the best flame retardant property,achieving the highest limiting oxygen index(LOI)(30.2 vol%)and a UL94 V-0 rating,and the flame retardant mechanisms may be gas phase along with condense phase mechanism.
基金Funded by the Program for New Century Excellent Talents in University of Ministry of Education of China(NCET-12-0912)。
文摘To improve the flame resistance of polypropylene(PP)/carbon fiber(CF)composite materials,triazine char-forming agent(TCA)was compounded with ammonium polyphosphate(APP)or modified APP(CS-APP)in a 2:1 ratio to prepare intumescent flame retardant(IFR)and the modified intumescent flame retardant(CS-IFR)in this paper.Flame retardancy and thermal degradation behaviors of the composites modified by IFR and CS-IFR were characterized by Fourier Transform Infrared(FTIR),contact angle measurement,oxygen index(OI),vertical burning tests(UL-94),thermogravimetric analyer(TGA),and thermogravimetric analyzer coupled with Fourier transform infrared(TG-FTIR).It was found that 25.0 phr of IFR and 24.0 phr of CS-IFR could improve the LOI value of PP/CF composites to 28.3%and 28.9%,respectively.At the same time,a UL-94 V-0 rating was achieved.The experimental results show that the IFR and CS-IFR prepared could effectively improve the flame retardancy and thermostability of PP/CF composites,and they would greatly expand the application range of PP/CF composite materials.