Flame retardant coatings are functional materials that can serve as decorative and protec-tive substrates in the event of a fire.Flame retardant coatings generally consist of two parts:a base material and a flame reta...Flame retardant coatings are functional materials that can serve as decorative and protec-tive substrates in the event of a fire.Flame retardant coatings generally consist of two parts:a base material and a flame retardant agent.A detailed introduction was given to the development of flame retardant coatings in recent years and the flame retardants used in flame retardant coatings.Flame retardants mainly include halogen flame retar-dants,phosphorus nitrogen flame retardants,expansion flame retardants,biomass flame retardants,and graphene flame retardants.The application of flame retardant coatings in the fields of epoxy resin,polyurethane,etc.was elaborated.In addition,the application of new biomass flame retardants and graphene flame retardants was introduced,and the future development of flame retardant coatings and flame retardants was described.展开更多
To develop an efficient way to overcome the contradiction among flame retardancy,smoke suppression,and thermal insulation in expanded polystyrene(EPS)foams,which are widely used insulation materials in buildings,a nov...To develop an efficient way to overcome the contradiction among flame retardancy,smoke suppression,and thermal insulation in expanded polystyrene(EPS)foams,which are widely used insulation materials in buildings,a novel"green"porous bio-based flame-retard ant starch(FRS)coating was designed from starch modified with phytic acid(PA)that simultaneously acts as both a flame retardant and an adhesive.This porous FRS coating has open pores,which,in combination with the closed cells formed by EPS beads,create a hierarchically porous structure in FRS-EPS that results in superior thermal insulation with a lower thermal conductivity of 27.0 mW·(m·K)^(-1).The resultant FRS-EPS foam showed extremely low heat-release rates and smoke-production release,indicating excellent fire retardancy and smoke suppression.The specific optical density was as low as 121,which was 80.6%lower than that of neat EPS,at 624.The FRS-EPS also exhibited self-extinguishing behavior in vertical burning tests and had a high limiting oxygen index(LOI)value of 35.5%.More interestingly,after being burnt with an alcohol lamp for 30 min,the top side temperature of the FRS-EPS remained at only 140℃with ignition,thereby exhibiting excellent fire resistance.Mechanism analysis confirmed the intumescent action of FRS,which forms a compact phosphorus-rich hybrid barrier,and the phosphorus-containing compounds that formed in the gas phase contributed to the excellent flame retardancy and smoke suppression of FRS-EPS.This novel porous biomass-based FRS system provides a promising strategy for fabricating polymer foams with excellent flame retardancy,smoke suppression,and thermal insulation.展开更多
The influences of category and density of reagents, temperature and the value of pH in the solution of stripping the nickel coating on NdFeB permanent magnet on the stripping result were studied systematically.The pra...The influences of category and density of reagents, temperature and the value of pH in the solution of stripping the nickel coating on NdFeB permanent magnet on the stripping result were studied systematically.The practical formular contains mainly the oxidant m-O2NC6H4SO3Na, the complex reagent ( NaOOCCH2 ) 2N( CH2 ) 2N( CH2COOH)2,the reagent of retarding corrosion KF and the calatyze RL-3 was obtained.展开更多
Linseed oil was epoxidized using hydrogen peroxide (H2O2), acetic acid (AcOH) and ion exchange resin AmberliteIR-120 as a catalyst. Epoxidized oil was separately dissolved in isopropyl alcohol (IPA) or diethylene glyc...Linseed oil was epoxidized using hydrogen peroxide (H2O2), acetic acid (AcOH) and ion exchange resin AmberliteIR-120 as a catalyst. Epoxidized oil was separately dissolved in isopropyl alcohol (IPA) or diethylene glycol butylether (DGBE) and phosphorylated with different amounts of phosphoric (H3PO4) acid (1%, 2%, 3% and 5%). Theformation of phosphate polyesters was confirmed by Fourier-transform infrared (FTIR) and 31P nuclearmagnetic resonance (NMR) spectra. Based on the synthesized polyols, polyurethane (PU) coatings were prepared.PU coating based on linseed oil diethylene glycol ester polyol was used as the reference. For the characterizationof coatings, mechanical tests and thermogravimetric analysis (TGA) were used. The flammability parameters ofwood samples with PU coatings at a heat flux of 35 kW/m2 were determined. It was found that PU coatings basedon IPA polyols had higher mechanical characteristics, char residue upon thermal decomposition and flameretardancy.展开更多
Self-cleaning coatings for tunnels can effectively remove dust and stains accumulated over the surface of tunnel linings and their appurtenances due to the closed environment and poor ventilation.This paper systematic...Self-cleaning coatings for tunnels can effectively remove dust and stains accumulated over the surface of tunnel linings and their appurtenances due to the closed environment and poor ventilation.This paper systematically introduces the current research status of self-cleaning coatings for tunnels,focusing on the development of super-hydrophobic self-cleaning coatings,superamphiphobic self-cleaning coatings,exhaust gas degradation coatings,fire retardant coatings,and tunnel de-icing coatings.The advantages and disadvantages of the five functional coatings are then briefly described,and the problems of self-cleaning coatings for tunnels at the present stage are pointed out.Finally,the development direction of self-cleaning coatings for tunnels is proposed to provide a reference for the research and application of self-cleaning coatings for tunnels.展开更多
In this work,the coatings used phosphorylated chitosan(PCS)and GP-108 via the dip-coating method presented exceptional flame retardancy and antibacterial properties for flexible polyurethane foams(FPUF).PCS/GP@FPUF wi...In this work,the coatings used phosphorylated chitosan(PCS)and GP-108 via the dip-coating method presented exceptional flame retardancy and antibacterial properties for flexible polyurethane foams(FPUF).PCS/GP@FPUF with 35%weight gain of PCS/GP can receive the UL-94 V-0 rating and obtain a 32%reduction of peak heat release rate value compared with that of FPUF,and it remains relatively dense char residues.The effective heat of combustion of PCS/GP@FPUF is 21.6 kJ/g,presenting a 22%decrease compared with that of FPUF.Meanwhile,the PCS/GP coatings mainly have the condensed-phase flame-retardant mechanism associated with the analysis of char residues and the volatile products released through the thermal degradation process.X-ray photoelectron spectroscopy results confirm that the char residues of PCS/GP@FPUF consist of highly-graphitized carbon and it formed P-N-Si synergistic char lay-ers.In addition,the antibacterial rates of PCS/GP@FPUF against Escherichia coli(E.coli)and Staphylococcus aureus(S.aureus)are 99.99%,and the incorporation of GP-108 does not influence the antibacterial proper-ties of PCS.Importantly,the resiliency of FPUFs has been slightly influenced.Briefly,the flame-retardant and antibacterial FPUFs with wonderful resiliency are hopeful to be applied as filler materials for vehicle seats and obtain longer service lives.展开更多
In this study, the effects of halloysite nanotubes (HNTs) reinforcement in expandable graphite based intumescent fire retardant coatings (IFRCs) developed using a polydimethylsiloxane (PDMS)/phenol BA epoxy syst...In this study, the effects of halloysite nanotubes (HNTs) reinforcement in expandable graphite based intumescent fire retardant coatings (IFRCs) developed using a polydimethylsiloxane (PDMS)/phenol BA epoxy system were investigated. Intumescent coating formulations were developed by incorporating different weight percentages of HNTs and PDMS in basic intumescent ingredients (ammonium polyphosphate/melamine/boric acid/expandable graphite, APP/MEL/BA/EG). The performance of intumescent formulations was investigated by furnace fire test, Bunsen burner fire test, field emission electron microscopy (FESEM), thermogravimetric analysis (TGA), transmission electron microscopy (TEM), and Fourier transform infrared analysis (FTIR). The Bunsen burner fire test results indicated that the fire performance of HNTs and PDMS reinforced intumescent formulation has improved due to the development of silicate network over the char residue. Improved expansion in char residue was also noticed in the formulation, SH(3), due to the minimum decomposition of char carbon. FESEM and TEM results validated the development of silicate network over char layer of coating formulations. A considerable mass loss difference was noticed during thermal gravimetric analysis (TGA) of intumescent coating formulations. Reference formulation, SH(0) with no filler, degraded at 300 ~C and lost 50% of its total mass but SH(3), due to synergistic effects between PDMS and HNTs, degraded above 400 ~C and showed the maximum thermal stability. XRD analysis showed the development of thermally stable compound mulltie, due to the synergism of HNTs and siloxane during intumescent reactions, which enhanced fire performance. FTIR analysis showed the presence of incorporated siloxane and silicates bonds in char residue, which endorsed the toughness of intumescent char layer produced. Moreover, the synergistic effect ofHNTs, PDMS, and other basic intumescent ingredients enhanced the polymer cross-linking in binder system and improved fire resistive performance of coatings.展开更多
The chemical compound 3-(N-ethylamino)isobutyl)trimethoxysilane(EAMS)modified titanium dioxide(TiO_(2)),producing EAMS-TiO_(2),which was encased in graphitic carbon nitride(GCN)and integrated into epoxy resin(EP).The ...The chemical compound 3-(N-ethylamino)isobutyl)trimethoxysilane(EAMS)modified titanium dioxide(TiO_(2)),producing EAMS-TiO_(2),which was encased in graphitic carbon nitride(GCN)and integrated into epoxy resin(EP).The protective properties of mild steel coated with this nanocomposite in a marine environment were assessedusing electrochemical techniques.Thermogravimetric analysis(TGA)and Cone calorimetry tests demonstrated thatGCN/EAMS-TiO_(2)significantly enhanced the flame retardancy of the epoxy coating,reducing peak heat release rate(PHRR)and total heat release(THR)values by 88%and 70%,respectively,compared to pure EP.Salt spray testsindicated reduced water absorption and improved corrosion resistance.The optimal concentration of 0.6 wt%GCNEAMS/TiO_(2)yielded the highest resistance,with the nanocomposite achieving a coating resistance of 7.50×10^(10)Ω·cm^(2)after 28 d in seawater.The surface resistance of EP-GCN/EAMS-TiO_(2)was over 99.9 times higher than pure EP after onehour in seawater.SECM analysis showed the lowest ferrous ion dissipation(1.0 nA)for EP-GCN/EAMS-TiO_(2)coatedsteel.FE-SEM and EDX analyses revealed improved breakdown products and a durable inert nanolayered covering.Thenanocomposite exhibited excellent water resistance(water contact angle of 167°)and strong mechanical properties,withadhesive strength increasing to 18.3 MPa after 28 d in seawater.EP-GCN/EAMS-TiO_(2)shows potential as a coatingmaterial for the shipping industry.展开更多
The combustion mechanisms of PP / Viscose blend fabrics are briefly discussed, and the factors affecting flame retarding(FR) effect are analyzed. Apart from this, the choice of processes of FR finish is also discussed...The combustion mechanisms of PP / Viscose blend fabrics are briefly discussed, and the factors affecting flame retarding(FR) effect are analyzed. Apart from this, the choice of processes of FR finish is also discussed in this paper. Other factors such as coating add-on, curing temperature and time are studied too. The results show that the factors above all have different extent of influence upon FR effect.展开更多
We have investigated the effect of zinc oxide as a photocatalyst and durable flame-retardant on cellulosic fibers. Zinc oxide nanocrystals were successfully synthesized and deposited onto cellulosic fibers using sol-g...We have investigated the effect of zinc oxide as a photocatalyst and durable flame-retardant on cellulosic fibers. Zinc oxide nanocrystals were successfully synthesized and deposited onto cellulosic fibers using sol-gel process at low temperature. The samples were characterized by means of several techniques such as scanning electron microscopy, transmission electron microscopy, diffuse reflectance spectroscopy, X-ray diffraction and thermogra- vimetric analysis. The photocatalytic activity was tested by measuring the photodegradation of methylene blue under UV-Vis illumination. Moreover, flame-retardancy was tested by vertical flame spread test. The optimum add-on value for donating flame-retardancy onto cellulosic fabric was obtained to be in the range of 15.24 to 23.20 g of the ZnO per 100 g of fabric. Thermogravimetric analysis of pure and flame-retarded samples were accomplished and discussed. The results obtained are in agreement with Wall effect theory and Coating theory. The originality of this work on introducing photoactive flame-retarded fibers is highly valuable for industrial implementation.展开更多
Wood,a readily available and sustainable natural resource,has found widespread use in construction and furniture.However,its inherent flammability poses a potential fire risk.Although intumescent fire-retardant coatin...Wood,a readily available and sustainable natural resource,has found widespread use in construction and furniture.However,its inherent flammability poses a potential fire risk.Although intumescent fire-retardant coatings effectively mitigate this risk,achieving high transparency in such coatings presents a significant challenge.In our approach,we employed a cross-linked network of phytic acid anion and N-[3-(trimethoxysilyl)propyl]-N,N,N-trimethylammonium cation to create a transparent"three-in-one"intumescent coating.The collaborative P/N/Si flame-retardant effect markedly improved the intumescent char-forming capability,preventing the wood from rapid decomposition.This resulted in a substantial reduction in heat release(13.9%decrease in THR)and an increased limiting oxygen index(LOI)value of 35.5%.Crucially,the high transparency of the coating ensured minimal impact on the wood's appearance,allowing the natural wood grains to remain clearly visible.This innovative approach provides a straightforward method for developing transparent intumescent flame-retardant coatings suitable for wooden substrates.The potential applications extend to preserving ancient buildings and heritage conservation efforts.展开更多
文摘Flame retardant coatings are functional materials that can serve as decorative and protec-tive substrates in the event of a fire.Flame retardant coatings generally consist of two parts:a base material and a flame retardant agent.A detailed introduction was given to the development of flame retardant coatings in recent years and the flame retardants used in flame retardant coatings.Flame retardants mainly include halogen flame retar-dants,phosphorus nitrogen flame retardants,expansion flame retardants,biomass flame retardants,and graphene flame retardants.The application of flame retardant coatings in the fields of epoxy resin,polyurethane,etc.was elaborated.In addition,the application of new biomass flame retardants and graphene flame retardants was introduced,and the future development of flame retardant coatings and flame retardants was described.
基金financially supported by the National Natural Science Foundation of China(51827803,51320105011,51790504,and 51721091)the Young Elite Scientists Sponsorship Program by CASTFundamental Research Funds for the Central Universities。
文摘To develop an efficient way to overcome the contradiction among flame retardancy,smoke suppression,and thermal insulation in expanded polystyrene(EPS)foams,which are widely used insulation materials in buildings,a novel"green"porous bio-based flame-retard ant starch(FRS)coating was designed from starch modified with phytic acid(PA)that simultaneously acts as both a flame retardant and an adhesive.This porous FRS coating has open pores,which,in combination with the closed cells formed by EPS beads,create a hierarchically porous structure in FRS-EPS that results in superior thermal insulation with a lower thermal conductivity of 27.0 mW·(m·K)^(-1).The resultant FRS-EPS foam showed extremely low heat-release rates and smoke-production release,indicating excellent fire retardancy and smoke suppression.The specific optical density was as low as 121,which was 80.6%lower than that of neat EPS,at 624.The FRS-EPS also exhibited self-extinguishing behavior in vertical burning tests and had a high limiting oxygen index(LOI)value of 35.5%.More interestingly,after being burnt with an alcohol lamp for 30 min,the top side temperature of the FRS-EPS remained at only 140℃with ignition,thereby exhibiting excellent fire resistance.Mechanism analysis confirmed the intumescent action of FRS,which forms a compact phosphorus-rich hybrid barrier,and the phosphorus-containing compounds that formed in the gas phase contributed to the excellent flame retardancy and smoke suppression of FRS-EPS.This novel porous biomass-based FRS system provides a promising strategy for fabricating polymer foams with excellent flame retardancy,smoke suppression,and thermal insulation.
文摘The influences of category and density of reagents, temperature and the value of pH in the solution of stripping the nickel coating on NdFeB permanent magnet on the stripping result were studied systematically.The practical formular contains mainly the oxidant m-O2NC6H4SO3Na, the complex reagent ( NaOOCCH2 ) 2N( CH2 ) 2N( CH2COOH)2,the reagent of retarding corrosion KF and the calatyze RL-3 was obtained.
文摘Linseed oil was epoxidized using hydrogen peroxide (H2O2), acetic acid (AcOH) and ion exchange resin AmberliteIR-120 as a catalyst. Epoxidized oil was separately dissolved in isopropyl alcohol (IPA) or diethylene glycol butylether (DGBE) and phosphorylated with different amounts of phosphoric (H3PO4) acid (1%, 2%, 3% and 5%). Theformation of phosphate polyesters was confirmed by Fourier-transform infrared (FTIR) and 31P nuclearmagnetic resonance (NMR) spectra. Based on the synthesized polyols, polyurethane (PU) coatings were prepared.PU coating based on linseed oil diethylene glycol ester polyol was used as the reference. For the characterizationof coatings, mechanical tests and thermogravimetric analysis (TGA) were used. The flammability parameters ofwood samples with PU coatings at a heat flux of 35 kW/m2 were determined. It was found that PU coatings basedon IPA polyols had higher mechanical characteristics, char residue upon thermal decomposition and flameretardancy.
基金financially supported by National Key R&D Program of China(2018YFB1600101).
文摘Self-cleaning coatings for tunnels can effectively remove dust and stains accumulated over the surface of tunnel linings and their appurtenances due to the closed environment and poor ventilation.This paper systematically introduces the current research status of self-cleaning coatings for tunnels,focusing on the development of super-hydrophobic self-cleaning coatings,superamphiphobic self-cleaning coatings,exhaust gas degradation coatings,fire retardant coatings,and tunnel de-icing coatings.The advantages and disadvantages of the five functional coatings are then briefly described,and the problems of self-cleaning coatings for tunnels at the present stage are pointed out.Finally,the development direction of self-cleaning coatings for tunnels is proposed to provide a reference for the research and application of self-cleaning coatings for tunnels.
基金support by the National Natural Science Foundation of China(Nos.51991354 and 51991350)supported by the State Key Laboratory of Bio-Fibers and Eco-Textiles(Qingdao University),No.ZDKT202107.
文摘In this work,the coatings used phosphorylated chitosan(PCS)and GP-108 via the dip-coating method presented exceptional flame retardancy and antibacterial properties for flexible polyurethane foams(FPUF).PCS/GP@FPUF with 35%weight gain of PCS/GP can receive the UL-94 V-0 rating and obtain a 32%reduction of peak heat release rate value compared with that of FPUF,and it remains relatively dense char residues.The effective heat of combustion of PCS/GP@FPUF is 21.6 kJ/g,presenting a 22%decrease compared with that of FPUF.Meanwhile,the PCS/GP coatings mainly have the condensed-phase flame-retardant mechanism associated with the analysis of char residues and the volatile products released through the thermal degradation process.X-ray photoelectron spectroscopy results confirm that the char residues of PCS/GP@FPUF consist of highly-graphitized carbon and it formed P-N-Si synergistic char lay-ers.In addition,the antibacterial rates of PCS/GP@FPUF against Escherichia coli(E.coli)and Staphylococcus aureus(S.aureus)are 99.99%,and the incorporation of GP-108 does not influence the antibacterial proper-ties of PCS.Importantly,the resiliency of FPUFs has been slightly influenced.Briefly,the flame-retardant and antibacterial FPUFs with wonderful resiliency are hopeful to be applied as filler materials for vehicle seats and obtain longer service lives.
基金The authors acknowledge the financial and laboratory support provided by UTP via YUTP research grantMechanical Engineering Department of Universiti Teknologi PETRONAS,Malaysia for this study
文摘In this study, the effects of halloysite nanotubes (HNTs) reinforcement in expandable graphite based intumescent fire retardant coatings (IFRCs) developed using a polydimethylsiloxane (PDMS)/phenol BA epoxy system were investigated. Intumescent coating formulations were developed by incorporating different weight percentages of HNTs and PDMS in basic intumescent ingredients (ammonium polyphosphate/melamine/boric acid/expandable graphite, APP/MEL/BA/EG). The performance of intumescent formulations was investigated by furnace fire test, Bunsen burner fire test, field emission electron microscopy (FESEM), thermogravimetric analysis (TGA), transmission electron microscopy (TEM), and Fourier transform infrared analysis (FTIR). The Bunsen burner fire test results indicated that the fire performance of HNTs and PDMS reinforced intumescent formulation has improved due to the development of silicate network over the char residue. Improved expansion in char residue was also noticed in the formulation, SH(3), due to the minimum decomposition of char carbon. FESEM and TEM results validated the development of silicate network over char layer of coating formulations. A considerable mass loss difference was noticed during thermal gravimetric analysis (TGA) of intumescent coating formulations. Reference formulation, SH(0) with no filler, degraded at 300 ~C and lost 50% of its total mass but SH(3), due to synergistic effects between PDMS and HNTs, degraded above 400 ~C and showed the maximum thermal stability. XRD analysis showed the development of thermally stable compound mulltie, due to the synergism of HNTs and siloxane during intumescent reactions, which enhanced fire performance. FTIR analysis showed the presence of incorporated siloxane and silicates bonds in char residue, which endorsed the toughness of intumescent char layer produced. Moreover, the synergistic effect ofHNTs, PDMS, and other basic intumescent ingredients enhanced the polymer cross-linking in binder system and improved fire resistive performance of coatings.
文摘The chemical compound 3-(N-ethylamino)isobutyl)trimethoxysilane(EAMS)modified titanium dioxide(TiO_(2)),producing EAMS-TiO_(2),which was encased in graphitic carbon nitride(GCN)and integrated into epoxy resin(EP).The protective properties of mild steel coated with this nanocomposite in a marine environment were assessedusing electrochemical techniques.Thermogravimetric analysis(TGA)and Cone calorimetry tests demonstrated thatGCN/EAMS-TiO_(2)significantly enhanced the flame retardancy of the epoxy coating,reducing peak heat release rate(PHRR)and total heat release(THR)values by 88%and 70%,respectively,compared to pure EP.Salt spray testsindicated reduced water absorption and improved corrosion resistance.The optimal concentration of 0.6 wt%GCNEAMS/TiO_(2)yielded the highest resistance,with the nanocomposite achieving a coating resistance of 7.50×10^(10)Ω·cm^(2)after 28 d in seawater.The surface resistance of EP-GCN/EAMS-TiO_(2)was over 99.9 times higher than pure EP after onehour in seawater.SECM analysis showed the lowest ferrous ion dissipation(1.0 nA)for EP-GCN/EAMS-TiO_(2)coatedsteel.FE-SEM and EDX analyses revealed improved breakdown products and a durable inert nanolayered covering.Thenanocomposite exhibited excellent water resistance(water contact angle of 167°)and strong mechanical properties,withadhesive strength increasing to 18.3 MPa after 28 d in seawater.EP-GCN/EAMS-TiO_(2)shows potential as a coatingmaterial for the shipping industry.
文摘The combustion mechanisms of PP / Viscose blend fabrics are briefly discussed, and the factors affecting flame retarding(FR) effect are analyzed. Apart from this, the choice of processes of FR finish is also discussed in this paper. Other factors such as coating add-on, curing temperature and time are studied too. The results show that the factors above all have different extent of influence upon FR effect.
文摘We have investigated the effect of zinc oxide as a photocatalyst and durable flame-retardant on cellulosic fibers. Zinc oxide nanocrystals were successfully synthesized and deposited onto cellulosic fibers using sol-gel process at low temperature. The samples were characterized by means of several techniques such as scanning electron microscopy, transmission electron microscopy, diffuse reflectance spectroscopy, X-ray diffraction and thermogra- vimetric analysis. The photocatalytic activity was tested by measuring the photodegradation of methylene blue under UV-Vis illumination. Moreover, flame-retardancy was tested by vertical flame spread test. The optimum add-on value for donating flame-retardancy onto cellulosic fabric was obtained to be in the range of 15.24 to 23.20 g of the ZnO per 100 g of fabric. Thermogravimetric analysis of pure and flame-retarded samples were accomplished and discussed. The results obtained are in agreement with Wall effect theory and Coating theory. The originality of this work on introducing photoactive flame-retarded fibers is highly valuable for industrial implementation.
基金financially supported by State Grid Corporation of China Science and Technology Project Funding(No.52199723000M)the National Natural Science Foundation of China(No.52122302)Sichuan Science and Technology Program(No.2023NSFSC1943)。
文摘Wood,a readily available and sustainable natural resource,has found widespread use in construction and furniture.However,its inherent flammability poses a potential fire risk.Although intumescent fire-retardant coatings effectively mitigate this risk,achieving high transparency in such coatings presents a significant challenge.In our approach,we employed a cross-linked network of phytic acid anion and N-[3-(trimethoxysilyl)propyl]-N,N,N-trimethylammonium cation to create a transparent"three-in-one"intumescent coating.The collaborative P/N/Si flame-retardant effect markedly improved the intumescent char-forming capability,preventing the wood from rapid decomposition.This resulted in a substantial reduction in heat release(13.9%decrease in THR)and an increased limiting oxygen index(LOI)value of 35.5%.Crucially,the high transparency of the coating ensured minimal impact on the wood's appearance,allowing the natural wood grains to remain clearly visible.This innovative approach provides a straightforward method for developing transparent intumescent flame-retardant coatings suitable for wooden substrates.The potential applications extend to preserving ancient buildings and heritage conservation efforts.