期刊文献+
共找到123篇文章
< 1 2 7 >
每页显示 20 50 100
Investigation of oxy-fuel combustion for methane and acid gas in a diffusion flame
1
作者 Songling Guo Xun Tao +5 位作者 Fan Zhou Mengyan Yu Yufan Wu Yunfei Gao Lu Ding Fuchen Wang 《Chinese Journal of Chemical Engineering》 SCIE EI CAS CSCD 2024年第1期106-116,共11页
Co-combustion of methane(CH4)and acid gas(AG)is required to sustain the temperature in Claus reaction furnace.In this study,oxy-fuel combustion of methane and acid gas has been experimentally studied in a diffusion fl... Co-combustion of methane(CH4)and acid gas(AG)is required to sustain the temperature in Claus reaction furnace.In this study,oxy-fuel combustion of methane and acid gas has been experimentally studied in a diffusion flame.Three equivalence ratios(ER=1.0,1.5,2.0)and CH_(4)-addition ratios(CH_(4)/AG=0.3,0.5,0.7)were examined and the flame was interpreted by analyzing the distributions of the temperature and species concentration along central axial.CH_(4)-AG diffusion flame could be classified into three sections namely initial reaction,oxidation and complex reaction sections.Competitive oxidation of CH_(4)and H_(2)S was noted in the first section wherein H_(2)S was preferred and both were mainly proceeding decomposition and partial oxidation.SO_(2)was formed at oxidation section together with obvious presence of H2 and CO.However,H2 and CO were inclined to be sustained under fuel rich condition in the complex reaction section.Reducing ER and increasing CH4/AG contributed to higher temperature,H_(2)S and CH_(4)oxidation and CO_(2)reactivity.Hence a growing trend for CH_(4)and AG to convert into H_(2),CO and SO_(2)could be witnessed.And this factor enhanced the generation of CS2 and COS in the flame inner core by interactions of CH4 and CO_(2)with sulfur species.COS was formed through the interactions of CO and CO_(2)with sulfur species.The CS_(2)production directly relied on reaction of CH_(4)with sulfur species.The concentration of COS was greater than CS_(2)since CS_(2)was probably inhibited due to the presence of H_(2).COS and CS_(2)could be consumed by further oxidation or other complex reactions. 展开更多
关键词 Acid gas METHANE oxy-fuel combustion OXIDATION Chemical analysis Carbon sulfides
下载PDF
Effect of carbon dioxide on oxy-fuel combustion of hydrogen sulfide:An experimental and kinetic modeling
2
作者 Xun Tao Fan Zhou +6 位作者 Xinlei Yu Songling Guo Yunfei Gao Lu Ding Guangsuo Yu Zhenghua Dai Fuchen Wang 《Chinese Journal of Chemical Engineering》 SCIE EI CAS CSCD 2023年第7期105-117,共13页
CO_(2) is an important component in the acid gas and it is necessary to study the effect of CO_(2) presence on the oxy-fuel combustion of H_(2)S with particular focus on the formation of carbonyl sulfide(COS).The oxyf... CO_(2) is an important component in the acid gas and it is necessary to study the effect of CO_(2) presence on the oxy-fuel combustion of H_(2)S with particular focus on the formation of carbonyl sulfide(COS).The oxyfuel combustion of acid gas was conducted in a coaxial jet double channel burner.The distribution of flame temperature and products under stoichiometric condition along axial(R=0.0)and radial at about 3.0 mm(R=0.75)were analyzed,respectively.The Chemkin-Pro software was used to analyze the rate of production(ROP)for gas products and the reaction pathway of acid gas combustion.Both experimental and simulation results showed that acid gas combustion experienced the H2S chemical decomposition,H_(2)S oxidation and accompanied by H_(2) oxidation.The CO_(2) presence reduced the peak flame temperature and triggered the formation of COS in the flame area.COS formation at R=0.0 was mainly through the reaction of CO_(2) and CO with sulfur species,whereas at R=0.75 it was through the reaction of CO with sulfur species.The ROP results indicated that H_(2) was mainly from H_(2)O decomposition in the H_(2)S oxidation stage,and COS was formed by the reaction of CO_(2) with H_(2)S.ROP and other detailed analysis further revealed the role of H,OH and SH radicals in each stage of H_(2)S conversion.This study revealed the COS formation mechanisms with CO_(2) presence in the oxy-fuel combustion of H_(2)S and could offer important insights for pollutant control. 展开更多
关键词 Carbon dioxide oxy-fuel combustion of H_(2)S Reaction pathway KINETICS OXIDATION
下载PDF
Comparative study on SO_2 release and removal under air and oxy-fuel combustion in a fluidized bed combustor 被引量:1
3
作者 郑志敏 王辉 +4 位作者 杨利 魏星 郭永军 郭帅 吴少华 《Journal of Southeast University(English Edition)》 EI CAS 2015年第2期232-237,共6页
SO2 release and removal were studied under both the air and oxy-fuel combustion conditions using an anthracite coal from the Jincheng mine in China on a bench-scale fluidized bed combustor (FBC). Special attention w... SO2 release and removal were studied under both the air and oxy-fuel combustion conditions using an anthracite coal from the Jincheng mine in China on a bench-scale fluidized bed combustor (FBC). Special attention was paid to the effects of the combustion atmosphere, 02 concentration, bed temperature, and limestone addition. The released amount of SO2 was clearly higher under 30% 02/70% CO2 than that of the air atmosphere. As the O2 concentration in O2/CO2 mixture increased from 21% to 40%, the released amount of SO2 increased significantly, but then it decreased when the 02 concentration increased up to 50%. The bed temperature from 860 to 920 ℃ has no obvious influence on the the SO2 release but shows a strong influence on the desulfurization with limestone in both oxy-fuel and air conditions. The maximum SO2 removal efficiency appears to be at 880 to 900 ℃ for both the air and oxy-fuel combustion conditions. 展开更多
关键词 oxy-fuel combustion fluidized bed SO2 release limestone desulfuration
下载PDF
Numerical Simulation of Flameless Premixed Combustion with an Annular Nozzle in a Recuperative Furnace 被引量:33
4
作者 米建春 李鹏飞 郑楚光 《Chinese Journal of Chemical Engineering》 SCIE EI CAS CSCD 2010年第1期10-17,共8页
This paper reports an investigation of Computational Fluid Dynamics(CFD)on the influence of injection momentum rate of premixed air and fuel on the flameless Moderate or Intense Low oxygen Dilution(MILD) combustion in... This paper reports an investigation of Computational Fluid Dynamics(CFD)on the influence of injection momentum rate of premixed air and fuel on the flameless Moderate or Intense Low oxygen Dilution(MILD) combustion in a recuperative furnace.Details of the furnace flow velocity,temperature,O2,CO2 and NOx concentrations are provided.Results obtained suggest that the flue gas recirculation plays a vital role in establishing the premixed MILD combustion.It is also revealed that there is a critical momentum rate of the fuel-air mixture below which MILD combustion does not occur.Moreover,the momentum rate appears to have less significant influence on conventional global combustion than on MILD combustion. 展开更多
关键词 flameless oxidation premixed combustion numerical simulation
下载PDF
Emission characteristics and combustion instabilities in an oxy-fuel swirl-stabilized combustor 被引量:9
5
作者 Guo-neng LI Hao ZHOU Ke-fa CEN 《Journal of Zhejiang University-Science A(Applied Physics & Engineering)》 SCIE EI CAS CSCD 2008年第11期1582-1589,共8页
This paper presents an experimental study on the emission characteristics and combustion instabilities of oxy-fuel combustions in a swirl-stabilized combustor. Different oxygen concentrations (Xoxy=25%~45%, where Xox... This paper presents an experimental study on the emission characteristics and combustion instabilities of oxy-fuel combustions in a swirl-stabilized combustor. Different oxygen concentrations (Xoxy=25%~45%, where Xoxy is oxygen concentra- tion by volume), equivalence ratios (φ=0.75~1.15) and combustion powers (CP=1.08~2.02 kW) were investigated in the oxy-fuel (CH4/CO2/O2) combustions, and reference cases (Xoxy=25%~35%, CH4/N2/O2 flames) were covered. The results show that the oxygen concentration in the oxidant stream significantly affects the combustion delay in the oxy-fuel flames, and the equivalence ratio has a slight effect, whereas the combustion power shows no impact. The temperature levels of the oxy-fuel flames inside the combustion chamber are much higher (up to 38.7%) than those of the reference cases. Carbon monoxide was vastly produced when Xoxy>35% or φ>0.95 in the oxy-fuel flames, while no nitric oxide was found in the exhaust gases because no N2 participates in the combustion process. The combustion instability of the oxy-fuel combustion is very different from those of the reference cases with similar oxygen content. Oxy-fuel combustions excite strong oscillations in all cases studied Xoxy=25%~45%. However, no pressure fluctuations were detected in the reference cases when Xoxy>28.6% accomplished by heavily sooting flames which were not found in the oxy-fuel combustions. Spectrum analysis shows that the frequency of dynamic pressure oscillations exhibits randomness in the range of 50~250 Hz, therefore resulting in a very small resultant amplitude. Temporal oscillations are very strong with amplitudes larger than 200 Pa, even short time fast Fourier transform (FFT) analysis (0.08 s) shows that the pressure amplitude can be larger than 40 Pa. 展开更多
关键词 SWIRL oxy-fuel combustion instability Pollutant emissions
下载PDF
Transformation of alkali and alkaline-earth metals during coal oxy-fuel combustion in the presence of SO_2 and H_2O 被引量:6
6
作者 Liying Wang Haixin Mao +3 位作者 Zengshuang Wang Jian-Ying Lin Meijun Wang Liping Chang 《Journal of Energy Chemistry》 SCIE EI CAS CSCD 2015年第4期381-387,共7页
The occurrence modes of alkali and alkaline-earth metals(AAEMs) in coal relate to their release behavior and ash formation during combustion. To better understand the transformation of AAEMs,the release behavior of ... The occurrence modes of alkali and alkaline-earth metals(AAEMs) in coal relate to their release behavior and ash formation during combustion. To better understand the transformation of AAEMs,the release behavior of water-soluble,HCl-soluble,HCl-insoluble AAEMs during Shenmu coal(SM coal) oxy-fuel combustion in the presence of SO2 and H2O in a drop-tube reactor was investigated through serial dissolution using H2O and HCl solutions. The results show that the release rates of AAEMs increase with an increase in temperature under the three atmospheres studied. The high release rates of Mg and Ca from SM coal are dependent on the high content of soluble Mg and Ca in SM coal. SO2 inhibits the release rates of AAEMs,while H2O promotes them. The effects of SO2 and H2O on the Na and K species are more evident than those on Mg and Ca species. All three types of AAEMs in coal can volatilize in the gas phase during coal combustion. The W-type AAEMs release excessively,whereas the release rates of I-type AAEMs are relatively lower. Different types of AAEM may interconvert through different pathways under certain conditions. Both SO2 and H2O promote the transformation reactions. The effect of SO2 was related to sulfate formation and the promotion by H2O occurs because of a decrease in the melting point of the solid as well as the reaction of H2O. 展开更多
关键词 COAL oxy-fuel combustion Alkali metal Alkaline-earth metal Occurrence mode TRANSFORMATION
下载PDF
Gas-phase oxidation of NO at high pressure relevant to sour gas compression purification process for oxy-fuel combustion flue gas 被引量:3
7
作者 Qian Cheng Dunyu Liu +3 位作者 Jun Chen Jing Jin Wei Li Shuaishuai Yu 《Chinese Journal of Chemical Engineering》 SCIE EI CAS CSCD 2019年第4期884-895,共12页
The removal of NO from oxy-fuel combustion is typically incorporated in sour gas compression purification process. This process involves the oxidation of NO to NO2 at a high pressure of 1–3 MPa, followed by absorptio... The removal of NO from oxy-fuel combustion is typically incorporated in sour gas compression purification process. This process involves the oxidation of NO to NO2 at a high pressure of 1–3 MPa, followed by absorption of NO2 by water. In this pressure range, the NO conversion rates calculated using the existing kinetic constants are often higher than those obtained experimentally. This study aimed to achieve the regression of kinetic parameters of NO oxidation based on the existing experimental results and theoretical models.Based on three existing NO oxidation mechanisms, first, the expressions for NO conversion against residence time were derived. By minimizing the mean-square errors of NO conversion ratio, the optimum kinetic rate constants were obtained. Without considering the reverse reaction for NO oxidation, similar mean-square errors for NO conversion ratio were calculated. Considering the reverse reaction for NO oxidation based on the termolecular reaction mechanism, the minimum mean-square error for NO conversion ratio was obtained. Thus, the optimum NO oxidation rate in the pressure range 0.1–3 MPa can be expressed as follows:-d[NO]/dt=d[NO2]/dt=0.0026[NO]2[O2]-0.0034[NO2]2 Detailed elementary reactions for N2/NO/NO2/O2 system were established to simulate the NO oxidation rate. A sensitivity analysis showed that the critical elementary reaction is 2 NO + O2? 2 NO2. However, the simulated NO conversions at a high pressure of 10–30 bar are still higher than the experimental values and similar to those obtained from the models without considering the reverse reaction for NO oxidation. 展开更多
关键词 oxy-fuel combustion NO oxidation SOUR gas compression
下载PDF
Microstructure and Performances of Glasses Melt under Oxy-fuel Combustion
8
作者 李铭涵 DUAN Qiutong +2 位作者 ZHAO Huifeng TAO Haizheng 姜宏 《Journal of Wuhan University of Technology(Materials Science)》 SCIE EI CAS 2017年第1期19-22,共4页
We prepared a series of glass samples under the different simulated atmosphere.Systematic evaluation about the performances of the glasses fabricated under the different simulated atmosphere indicates that the increas... We prepared a series of glass samples under the different simulated atmosphere.Systematic evaluation about the performances of the glasses fabricated under the different simulated atmosphere indicates that the increase of the H2O:CO2 ratio under the simulated atmosphere will decrease the softening point temperature,microhardness,viscosity,and chemical resistance,while increase the thermal expansion coefficient.Through the analysis of the hydroxyl content and network structure according to the IR transmitting spectra and NMR spectra,the structural origin of the evolution of the performances for the samples fabricated under different simulated atmosphere was elucidated.According to the feedback information from the customers,despite the decrease of some performances,the glass produced under oxy-fuel combustion can also fulfill the requirements of the engineering applications.Therefore,the technique of oxy-fuel combustion is worthy to be promoted in glass industry. 展开更多
关键词 oxy-fuel combustion ATMOSPHERE HYDROXYL PERFORMANCE
下载PDF
Joint RANS/LES Modeling of Flameless Combustion
9
作者 Vladimir L. Zimont Valerio Battaglia 《Energy and Power Engineering》 2011年第5期616-624,共9页
We present our timesaving joint RANS/LES approach (we originally developed it for numerical simulations of turbulent premixed combustion) to simulate flameless combustion with separate injection of gas fuel and strong... We present our timesaving joint RANS/LES approach (we originally developed it for numerical simulations of turbulent premixed combustion) to simulate flameless combustion with separate injection of gas fuel and strong exhaust gas recirculation. It is based on successive RANS/LES numerical modeling where part of the information (stationary average fields) is achieved by RANS simulations and part (instantaneous nonstationary image of the process) by LES. The latter is performed using the RANS field of mean dissipation rate to model the sub-grid turbulent viscosity in the context of the Kolmogorov theory of small-scale turbulence. We analyze flameless combustion in the FLOX? combustor where we also simulate non-premixed flame combustion used for preliminary heating of the combustor. Different regimes take place using different systems of air injection. We applied for both regimes the simple assumption of “mixed is burnt”. The main results are the following: 1) RANS simulations demonstrate for used two injection systems respectively more compact flame and distributed flameless combustion. 2)There is agreement between RANS and corresponding LES results: RANS and averaged LES profiles of the velocity and temperature are in reasonable agreement. 3) LES modeling with Kolmogorov independent on time sub-grid viscosity reproduce instantaneous image of the process including the vortex structures. Probably due to using an annular injector system for air the instantaneous field of the temperature demonstrate significant irregularity in the beginning of the burner, which in an animation looks like moving coherent structures. 4) In the joint RANS/LES approach the computer time of the LES sub-problems is much shorter than classic LES modeling due to using time independent subgrid transport coefficients and avoiding long-continued simulations, which are necessary for averaging of instantaneous LES fields. Practically in our simulations time consuming of the LES sub-problem was only several times lager then the RANS one and it makes this approach suitable for industrial applications. 展开更多
关键词 flameless combustion JOINT RANS/LES MODELING FLOX BURNER
下载PDF
Effect of Atmosphere on Volatile Emission Characteristic in Oxy-Fuel Combustion
10
作者 Le Wu Shihe Chen Jia Luo 《Energy and Power Engineering》 2013年第2期135-139,共5页
A new type of power supply which was called oxy-fuel combustion power plant was introduced to reduce greenhouse gasses emission. In this paper the volatile emission characteristic of pulverized coal is studied under a... A new type of power supply which was called oxy-fuel combustion power plant was introduced to reduce greenhouse gasses emission. In this paper the volatile emission characteristic of pulverized coal is studied under air atmosphere and oxy-fuel atmosphere. Combustion experiments of Datong bituminous coal were carried out in a wire mesh reactor at heating rates of 1 K/s, 10 K/s and 1000 K/s respectively under air and O2/CO2 atmosphere conditions in order to investigate the volatile emission characteristic. The concentrations of volatile (mainly CO and CH4) emission were on-line measured by infrared gas analyzer. It was indicated that the concentrations of CO and CH4 in O2/CO2 atmosphere were higher than those in air. The direct oxidation of carbon and gasification reaction between carbon and CO2 are the main causes of the increased amount of CO. The higher concentration of CO2 also results in the increased amount of CH4 in O2/CO2 conditions. 展开更多
关键词 oxy-fuel combustion O2/CO2 ATMOSPHERE VOLATILE Emission GASIFICATION Reaction
下载PDF
Low Steam Condition Heat Generator Combined with Advanced Oxy-Fuel Combustion LNG Gas Turbine for Power Generation
11
作者 Kanji Oshima Yohji Uchiyama 《Journal of Energy and Power Engineering》 2012年第8期1226-1232,共7页
We propose a novel concept for power generation that involves the combination of a LSCHG (low-steam-condition heat generator), such as a light water nuclear reactor or a biomass combustion boiler, with an advanced c... We propose a novel concept for power generation that involves the combination of a LSCHG (low-steam-condition heat generator), such as a light water nuclear reactor or a biomass combustion boiler, with an advanced closed-cycle oxy-fuel combustion gas turbine-a type of complex and efficient oxy-fuel gas turbine. In this study, a LSCHG is designed to heat water to saturated steam of a few MPa, to assist in the generation of the main working fluids, instead of a compressor used in the advanced oxy-fuel gas turbine. This saturated steam can have a lower pressure and temperature than those of an existing nuclear power plant or biomass-fired power plant. We estimated plant performances in LHV (lower heating value) basis from a heat balance model based on a conceptual design of a plant for different gas turbine inlet pressures and temperatures of 1,300 ℃ and 1,500 ℃, taking into account the work to produce O2 and capture CO2. While the net power generating efficiencies of a reference plant are estimated to be about 52.0% and 56.0% at 1,300 ℃ and 1,500 ℃, respectively, and conventional LSCHG power plant is assumed to have an efficiency of about 35% or less for pressures of 2.5-6.5 MPa, the proposed hybrid plant achieved 42.8%-44.7% at 1,300 ℃ and 47.8%-49.2% at 1,500 ℃. In the proposed plant, even supposing that the generating efficiency of the LNG system in the proposed plant remains equal to that of the reference plant, the efficiency of LSCHG system can be estimated 37.4% for 6.5 MPa and 33.2% for 2.5 MPa, even though the LSHCG system may be regarded as consisting of fewer plant facilities than a conventional LSCHG power plant. 展开更多
关键词 Gas turbine oxy-fuel combustion hybrid power plant generating efficiency conceptual design.
下载PDF
Combustion and pollutant emission characteristics of coal in a pressurized fluidized bed under O_2/ CO_2 atmosphere 被引量:4
12
作者 段元强 段伦博 +1 位作者 胡海华 赵长遂 《Journal of Southeast University(English Edition)》 EI CAS 2015年第2期188-193,共6页
The pressurized combustion experiments of bituminous coal and lignite under air and O2/CO2 atmospheres were conducted to study the influences of pressure and atmosphere on combustion and the CO, NO, SO2 release proces... The pressurized combustion experiments of bituminous coal and lignite under air and O2/CO2 atmospheres were conducted to study the influences of pressure and atmosphere on combustion and the CO, NO, SO2 release process. Two indices, the maximum concentration and the total emission, were applied to quantitatively evaluate the influence of several different operating parameters such as pressure, atmosphere and temperature on the formation of NO and SO2 during coal combustion in the fluidized bed. The experimental results show that the releasing profiles of CO, NO and SO2 during coal combustion under a pressurized oxy- fuel atmosphere are similar to those under a pressurized air atmosphere, and the curves of measured gas components are all unimodal. Under the oxy-fuel condition, pressure increasing from 0.1 to 0.7 MPa can cause the inhibition of NO and SO2 emission. The elevation of temperature can lead to an increase in the maximum concentration and the total production of NO and SO2, and the increase under atmospheric pressure is higher than that under high pressure. 展开更多
关键词 pressurized oxy-fuel combustion fluidized bed SO2 emission NO emission
下载PDF
Experimental investigation on the NO formation of pulverized coal combustion under high-temperature and low-oxygen environments simulating MILD oxy-fuel combustion conditions
13
作者 Lanbo Li Yuegui Zhou +2 位作者 Chaoqiang Yang Anwen Peng Guanshuo Huang 《Carbon Resources Conversion》 EI 2024年第3期84-96,共13页
The NO formation experiments simulating moderate and intense low-oxygen dilution(MILD)oxy-coal combustion conditions were conducted on a laminar diffusion flame burner with the coflow temperatures of 1473-1873 K and t... The NO formation experiments simulating moderate and intense low-oxygen dilution(MILD)oxy-coal combustion conditions were conducted on a laminar diffusion flame burner with the coflow temperatures of 1473-1873 K and the oxygen volume fractions of 5%-20%in O_(2)/CO_(2),O_(2)/Ar and O_(2)/N_(2)atmospheres.The flame images of pulverized coal combustion were captured to obtain the ignition delay distances,and the axial species concentrations were measured to obtain the variation of NO formation and reduction.The NO yield in O_(2)/Ar atmosphere decreased by nearly 0.2 when the oxygen volume fraction decreased from 20%to 5%and by about 0.05 when the coflow temperature decreased from 1873 K to 1473 K.The NO yield in O_(2)/CO_(2)atmosphere was 0.1-0.15 lower than that in O_(2)/Ar atmosphere.The optimal kinetic parameters of thermal NO and fuel NO formation rate were obtained by a nonlinear fit of nth-order Arrhenius expression.Finally,the relative contribution rates of thermal NO to total NO(Rth)and NO reduction to fuel NO(Rre)were quantitatively separated.Rth decreases with the increase of oxygen volume fraction,below 6%at 1800 K,25%at 2000 K.Rre is almost unaffected by the coflow temperature and affected by the oxygen volume fraction,reaching 30%at 5%O_(2). 展开更多
关键词 Pulverized coal combustion MILD oxy-fuel combustion NO formation and reduction Chemical kinetics Relative contribution
原文传递
Effect of Varying Temperature and Oxygen on Particulate Matter Formation in Oxy-Biomass Combustion
14
作者 Chen Wang Cicilia Kemunto Mesa +9 位作者 Samuel Bimenyimana Nathan Bogonko George Adwek Yiyi Mo Godwin Norense Osarumwense Asemota Changfu Yuan Yaowen Chen Changtai Li Etienne Ntagwirumugara Aphrodis Nduwamungu 《Energy Engineering》 EI 2022年第3期863-881,共19页
Offsetting particulate matter emissions has become a critical global aim as there are concerted efforts to deal with environmental and energy poverty challenges.This study consists of investigations of computing emiss... Offsetting particulate matter emissions has become a critical global aim as there are concerted efforts to deal with environmental and energy poverty challenges.This study consists of investigations of computing emissions of particulate matter from biomass fuels in various atmospheres and temperatures.The laboratory setup included a fixed bed electric reactor and a particulate matter(PM)measuring machine interfaced with the flue gas from the fixed bed reactor combustion chamber.The experiments were conducted at seven different temperatures(600℃-1200℃)and six incremental oxygen concentrations(21%-100%).Five biomass types were studied;A-cornstalk,B-wood,C-wheat straw,D-Rice husk,E-Peanut shell,each pulverized to a size of approximately 75 microns.The study shows that PM emitted during char combustion is consistently higher than that emitted during the de-volatilization.During de-volatilization,increase in temperature leads to linear decrease in PM emission between atmospheres of 21%O_(2)to 50%O_(2),thereafter,between 70%O_(2)to 100%O_(2);increase in temperature leads to a rise in PM emission.The average PM formation from all the five considered biomass is relatively comparable however,with differing atmospheres and temperatures,the fibrous and low-density biomass forms more PM.During char combustion,the study shows that at oxygen levels of 21%,70%,90%and 100%,increase in temperature leads to increased PM emission.The increase in oxygen concentration and temperature increases the rate of combustion hence diminishing the time of combustion. 展开更多
关键词 oxy-fuel combustion particulate matter(PM) VOLATILES char combustion
下载PDF
空气预热条件下工业级无焰燃烧数值模拟研究
15
作者 李凯 张亚竹 +1 位作者 黄军 刘丛熙 《工业加热》 CAS 2024年第5期35-39,共5页
目前,研究者对无焰燃烧的探究大多选用实验室级别燃烧器,为进一步加强无焰燃烧在工业生产领域中的应用,本研究选用工业级燃烧器为研究对象,主要开展空气预热条件下的甲烷无焰燃烧数值模拟研究,探究空气预热温度及燃烧器结构变化对无焰... 目前,研究者对无焰燃烧的探究大多选用实验室级别燃烧器,为进一步加强无焰燃烧在工业生产领域中的应用,本研究选用工业级燃烧器为研究对象,主要开展空气预热条件下的甲烷无焰燃烧数值模拟研究,探究空气预热温度及燃烧器结构变化对无焰燃烧的影响。数值模拟结果表明:①高温预热空气较常温空气实现无焰燃烧时更具优势,一方面,高温预热空气对高温烟气的回收利用有效节约了能源消耗,另一方面,炉内温度均匀性随空气预热温度升高出现明显改善,空气预热温度为1123K时无焰燃烧状态最佳,此时炉内的峰值温度在1400K左右,平均温度在1300K左右。②本文所用燃烧器在实现无焰燃烧时需满足一定的射流动量(临界射流动量)和热功率输入。原始燃烧器实现无焰燃烧所需热功率为130kW以上,通过两种燃烧器喷嘴结构的两种优化,实现无焰燃烧所需热功率明显降低,可实现高效的燃烧。 展开更多
关键词 无焰燃烧 数值模拟 炉温分布 空气预热 热功率
下载PDF
环形套筒窑与炭材烘干系统烟气协同降氮工艺技术
16
作者 唐丹 张林进 《耐火与石灰》 2024年第3期46-48,共3页
某电石厂建设2座气烧环形套筒石灰窑,石灰窑生产的石灰供电石生产使用,前期通过技术改造,将2座环形套筒窑窑尾烟气输送到炭材烘干装置,作为炭材烘干热源进行使用,实现了余热综合利用,减少了能源消耗。但烟气排放无法达标,为进一步实现... 某电石厂建设2座气烧环形套筒石灰窑,石灰窑生产的石灰供电石生产使用,前期通过技术改造,将2座环形套筒窑窑尾烟气输送到炭材烘干装置,作为炭材烘干热源进行使用,实现了余热综合利用,减少了能源消耗。但烟气排放无法达标,为进一步实现“减排”效果,进行了降氮改造升级。本文详细介绍了套筒窑与炭材烘干系统烟气协同降氮工艺技术,在降低煤粉使用量的同时,将套筒窑与炭材烘干装置联合烟囱排放的总烟气氮氧化物(NO_(x))由328~345 mg/m^(3)降低至143~163 mg/m^(3),满足标准排放要求,增加了企业的经济效益和环保效益。 展开更多
关键词 套筒窑 炭材烘干装置 协同降氮 低氧燃烧 无焰燃烧
下载PDF
Experimental and Modelling Study on Emission of Volatile Nitrogen Derived NO during Pressured Oxy-fuel Combustion under Wet Flue Gas Environment
17
作者 ZAN Haifeng CHEN Xiaoping +4 位作者 PAN Suyang GENG Pengfei LIU Daoyin MA Jiliang LIANG Cai 《Journal of Thermal Science》 SCIE EI CAS CSCD 2023年第5期1750-1757,共8页
Pressurised oxy-fuel combustion(POFC)is a clean and efficient combustion technology with great potential.Due to the recycling of flue gas,the concentration of steam in the flue gas is higher than that of conventional ... Pressurised oxy-fuel combustion(POFC)is a clean and efficient combustion technology with great potential.Due to the recycling of flue gas,the concentration of steam in the flue gas is higher than that of conventional combustion,which enriches the free radical pool in the flue gas and thus affects the emission of gaseous pollutants.Therefore,further research into the effect of high steam concentrations on NO_(x)emission mechanisms in POFC is necessary.In this work,a fixed-bed reactor was used to conduct combustion experiments of volatiles and combined with chemical kinetic models to study the NO release characteristics for different pressures and steam concentrations in an O_(2)/CO_(2)atmosphere at 800℃/900℃temperature.The results of the study indicated that the volatile nitrogen comes from the pyrolysis of part of pyrrole,pyridine,and all quaternary nitrogen in coal.The increase in temperature promoted the formation of NO during combustion.Higher pressure affects the main reaction pathway for NO formation,promoting NO consumption by HCCO and C_(2)O groups while enhancing the overall NO reduction.Steam promoted NO consumption by NCO.In addition,steam increased the amount of H/OH groups during the reaction,which affected both NO formation and consumption.However,from the overall effect,the steam still inhibits the emission of NO. 展开更多
关键词 pressurized oxy-fuel combustion STEAM volatile nitrogen NO emission
原文传递
Energy Efficiency Analysis of Oxy-Fuel Circulating Fluidized Bed Combustion System with High Oxygen Concentration
18
作者 KONG Runjuan LI Wei +1 位作者 WANG Haigang REN Qiangqiang 《Journal of Thermal Science》 SCIE EI CAS CSCD 2023年第5期1737-1749,共13页
The low net efficiency of oxy-fuel circulating fluidized bed(CFB)combustion is mainly due to the addition of air separation unit(ASU)and carbon dioxide compression and purification unit(CPU).High oxygen concentration ... The low net efficiency of oxy-fuel circulating fluidized bed(CFB)combustion is mainly due to the addition of air separation unit(ASU)and carbon dioxide compression and purification unit(CPU).High oxygen concentration is one of the effective methods to improve the net efficiency of oxy-fuel combustion technology in CFB.In this research,a series of calculation and simulation were carried out based on Aspen Plus platform to provide valuable information for further investigation on the CFB oxy-fuel combustion system with high oxygen concentration(40%,50%).A CFB oxy-fuel combustion system model with high oxygen concentration was established including ASU,CPU and CFB oxy-fuel combustion and heat exchange unit.Based on the simulation data,energy and exergy efficiency were analyzed to obtain the following results.The cross-sectional area of furnace and tail flue of 50%CFB oxy-fuel combustion boiler are 43%and 56%of the original size respectively,reducing the construction and investment cost effectively.With the increase of oxygen concentration,the net efficiency of power generation increased significantly,reaching 24.85%and increasing by 6.09%under the condition of 50%oxy-fuel combustion.The total exergy loss increases with the increase of oxygen concentration.In addition,the exergy loss of radiation heat transfer is far higher than convection heat transfer. 展开更多
关键词 circulating fluidized bed oxy-fuel combustion high oxygen concentration process simulation
原文传递
Experimental study on NO_(x)emission characteristics under oxy-fuel combustion
19
作者 Haibo Wu Zhiyong An +3 位作者 Kai Zhang Yu Mao Zhimin Zheng Zhaohui Liu 《Clean Energy》 EI CSCD 2023年第3期595-601,共7页
This study focuses on the emission characteristics of NO_(x)under oxy-fuel combustion conditions.A comparative analysis with air combustion was performed.NO_(x)emission,control measures and influence factors under dif... This study focuses on the emission characteristics of NO_(x)under oxy-fuel combustion conditions.A comparative analysis with air combustion was performed.NO_(x)emission,control measures and influence factors under different working conditions were studied.Experiments were carried out on a 3-MWth test platform and a laboratory platform.The‘π’-type furnace was adopted,with the fur-nace width of 2.6 m,depth of 2.0 m and height of 10.5 m for the 3-MWth coal-fired boiler.NO_(x)emissions at different oxygen concen-trations and different air distribution were investigated;the effects of H2O and CO_(2)concentration on denitrification efficiency and SO_(2)/SO_(3)conversion rate were explored.Experiment results suggest that,compared with air combustion,NO concentration(volume basis)at the furnace outlet under oxy-fuel combustion is higher than that of air combustion,but the amount of NO_(x)emissions in the discharged gas significantly decrease compared to the air combustion conditions.In addition,the formation of NO_(x)can be effectively controlled through staged combustion.Furthermore,the selective catalytic reduction(SCR)denitrification efficiency and the con-version rate of SO_(2)to SO_(3)decreases when the CO_(2)concentration and the H2O content increase,indicating that CO_(2)and H2O have an adverse effect on the performance of the catalyst.Additionally,compared with CO_(2)concentration,H2O content has a greater effect on catalyst performance. 展开更多
关键词 experimental research NO_(x) oxy-fuel combustion SO_(2)/SO_(3)
原文传递
Co-firing of coal and biomass in oxy-fuel fluidized bed for CO2 capture: A review of recent advances 被引量:4
20
作者 Qinwen Liu Yan Shi +1 位作者 Wenqi Zhong Aibing Yu 《Chinese Journal of Chemical Engineering》 SCIE EI CAS CSCD 2019年第10期2261-2272,共12页
The co-firing of coal and biomass in oxy-fuel fluidized beds is one of the most promising technologies for capturing CO2.This technology has attracted wide attention from academia and industry in recent years as a neg... The co-firing of coal and biomass in oxy-fuel fluidized beds is one of the most promising technologies for capturing CO2.This technology has attracted wide attention from academia and industry in recent years as a negative emission method to capture CO2 produced by carbon contained in biomass.In the past decades,many studies have been carried out regarding experiments and numerical simulations under oxy-fuel combustion conditions.This paper firstly briefly discusses the techno-economic viability of the biomass and coal co-firing with oxycombustion and then presents a review of recent advancements involving experimental research and computational fluid dynamics(CFD)simulations in this field.Experimental studies on mechanism research,such as thermogravimetric analysis and tube furnace experiments,and fluidized bed experiments based on oxy-fuel fluidized beds with different sizes as well as the main findings,are summarized as a part of this review.It has been recognized that CFD is a useful approach for understanding the behaviors of the co-firing of coal and biomass in oxyfuel fluidized beds.We summarize a recent survey of published CFD research on oxy-fuel fluidized bed combustion,which categorized into Eulerian and Lagrangian methods.Finally,we discuss the challenges and interests for future research. 展开更多
关键词 oxy-fuel combustion CO-FIRING of COAL and BIOMASS oxy-fuel fluidized BED CFD simulation
下载PDF
上一页 1 2 7 下一页 到第
使用帮助 返回顶部