期刊文献+
共找到28篇文章
< 1 2 >
每页显示 20 50 100
IMPROVED UVLM FOR FLAPPING-WING AERODYNAMICS COMPUTATION
1
作者 贺红林 周翔 +1 位作者 龙玉繁 余春锦 《Transactions of Nanjing University of Aeronautics and Astronautics》 EI 2010年第3期205-212,共8页
To calculate the aerodynamics of flapping-wing micro air vehicle(MAV) with the high efficiency and the engineering-oriented accuracy,an improved unsteady vortex lattice method (UVLM) for MAV is proposed. The metho... To calculate the aerodynamics of flapping-wing micro air vehicle(MAV) with the high efficiency and the engineering-oriented accuracy,an improved unsteady vortex lattice method (UVLM) for MAV is proposed. The method considers the influence of instantaneous wing deforming in flapping,as well as the induced drag,additionally models the stretching and the dissipation of vortex rings,and can present the aerodynamics status on the wing surface. An implementation of the method is developed. Moreover,the results and the efficiency of the proposed method are verified by CFD methods. Considering the less time cost of UVLM,for application of UVLM in the MAV optimization,the influence of wake vortex ignoring time saving and precision is studied. Results show that saving in CPU time with wake vortex ignoring the appropriate distance is considerable while the precision is not significantly reduced. It indicates the potential value of UVLM in the optimization of MAV design. 展开更多
关键词 AERODYNAMICS flapping-wing micro air vehicle(MAV) unsteady vortex lattice method (UVLM) wake vortex ignoring
下载PDF
Modeling and Trajectory Tracking Control for Flapping-Wing Micro Aerial Vehicles 被引量:22
2
作者 Wei He Xinxing Mu +1 位作者 Liang Zhang Yao Zou 《IEEE/CAA Journal of Automatica Sinica》 SCIE EI CSCD 2021年第1期148-156,共9页
This paper studies the trajectory tracking problem of flapping-wing micro aerial vehicles(FWMAVs)in the longitudinal plane.First of all,the kinematics and dynamics of the FWMAV are established,wherein the aerodynamic ... This paper studies the trajectory tracking problem of flapping-wing micro aerial vehicles(FWMAVs)in the longitudinal plane.First of all,the kinematics and dynamics of the FWMAV are established,wherein the aerodynamic force and torque generated by flapping wings and the tail wing are explicitly formulated with respect to the flapping frequency of the wings and the degree of tail wing inclination.To achieve autonomous tracking,an adaptive control scheme is proposed under the hierarchical framework.Specifically,a bounded position controller with hyperbolic tangent functions is designed to produce the desired aerodynamic force,and a pitch command is extracted from the designed position controller.Next,an adaptive attitude controller is designed to track the extracted pitch command,where a radial basis function neural network is introduced to approximate the unknown aerodynamic perturbation torque.Finally,the flapping frequency of the wings and the degree of tail wing inclination are calculated from the designed position and attitude controllers,respectively.In terms of Lyapunov's direct method,it is shown that the tracking errors are bounded and ultimately converge to a small neighborhood around the origin.Simulations are carried out to verify the effectiveness of the proposed control scheme. 展开更多
关键词 flapping-wing micro aerial vehicles(FWMAVs) MODELING neural networks trajectory tracking
下载PDF
Stress Analysis of Membrane Flapping-Wing Aerial Vehicle Based on Different Material Models
3
作者 Chunjin Yu Daewon Kim Yi Zhao 《Journal of Applied Mathematics and Physics》 2014年第12期1023-1030,共8页
Recent studies of flapping-wing aerial vehicles have been focused on the aerodynamic performance based on linear materials. Little work has been done on structural analysis based on nonlinear material models. A stress... Recent studies of flapping-wing aerial vehicles have been focused on the aerodynamic performance based on linear materials. Little work has been done on structural analysis based on nonlinear material models. A stress analysis is conducted in this study on membrane flapping-wing aerial vehicles using finite element method based on three material models, namely, linear elastic, Mooney-Rivlin non linear, and composite material models. The purpose of this paper is to understand how different types of materials affect the stresses of a flapping-wing. In the finite element simulation, each flapping cycle is divided into twelve stages and the maximum stress is calculated in each stage. The results show that 1) there are two peak stress values in one flapping cycle;one at the beginning stage of down stroke and the other at the beginning of upstroke, 2) maximum stress at the beginning of down stroke is greater than that at the beginning of upstroke, 3) maximum stress based on each material model is different. The composite and the Mooney-Rivlin nonlinear models produce much less stresses compared to the linear material model;and 4) the ratio of downstroke maximum stress and upstroke maximum stress varies with different material models. This research is helpful in answering why insect wings are so impeccable, thus providing a possibility of improving the design of flapping-wing aerial vehicles. 展开更多
关键词 flapping-wing AERIAL VEHICLE MEMBRANE WING STRESS Analysis
下载PDF
Controlled flight of a self-powered micro blimp driven by insect-sized flapping-wing thrusters
4
作者 Xian YU Zhiwei LIU +2 位作者 Jiaming LENG Mingjing QI Xiaojun YAN 《Chinese Journal of Aeronautics》 SCIE EI CAS CSCD 2024年第6期127-136,共10页
Micro aerial platforms face significant challenges in achieving long controlled endurance as most of the energy is consumed to overcome the weight of the body.In this study,we present a controllable micro blimp that a... Micro aerial platforms face significant challenges in achieving long controlled endurance as most of the energy is consumed to overcome the weight of the body.In this study,we present a controllable micro blimp that addresses this issue through the use of a helium-filled balloon.The micro blimp has a long axis of 23 cm and is propelled by four insect-sized flapping-wing thrusters,each weighing 80 mg and with a wingspan of 3.5 cm.These distributed thrusters enable controlled motions and provide the micro blimp with an advantage in flight endurance compared to multirotors or flapping-wing micro aerial vehicles at the same size scale.To enhance the performance of the controlled flight,we propose a wireless control module that enables manipulation from a distance of up to 100 m.Additionally,a smartphone application is developed to send instructions to the circuit board,allowing the blimp to turn left and right,ascend and descend,and achieve a combination of these movements separately.Our findings demonstrate that this micro blimp is one of the smallest controlled self-powered micro blimps to date. 展开更多
关键词 Microairvehicle Aircraft control Self-powered micro blimp flapping-wing thruster Wireless flight
原文传递
An Experimental Study on Response and Control of a Flapping-Wing Aerial Robot Under Wind Gusts
5
作者 Kazuki Shimura Hikaru Aono Chang-kwon Kang 《Journal of Bionic Engineering》 SCIE EI CSCD 2024年第1期209-223,共15页
Bioinspired flapping-wing micro-air-vehicles(FWMAVs)have the potential to be useful aerial tools for gathering information in various environments.With recent advancements in manufacturing technologies and better unde... Bioinspired flapping-wing micro-air-vehicles(FWMAVs)have the potential to be useful aerial tools for gathering information in various environments.With recent advancements in manufacturing technologies and better understanding of aerodynamic mechanisms behind of the flapping flight,outdoor flights have become a reality.However,to fully realize the potential of FWMAVs,further improvements are necessary,particularly in terms of stability and robustness under gusty conditions.In this study,the response and control of a tailless two-winged FWMAV under the wind gusts are investigated.Physical experiments are conducted with a one-degree-of-freedom gimbal to focus on effects of wind gusts on the rotational motion of the FWMAV.Proportional-derivative and sliding-mode controls are adopted for the attitude control.Results present that the body angles changed in time and reached approximately 50°at the maximum due to the wing gusts.The sliding-mode controller can more effectively control the rotational angle in the presence of disturbances and both the wing speed and changes in wind speed have an impact on the effectiveness of attitude control.These results contribute to the development of of tailless two-winged,single-motor driven FWMAVs in terms of the design of attitude controller and testing apparatus. 展开更多
关键词 flapping-wing micro-air vehicles Sliding-mode control Pitch and roll angle-Wind gus
原文传递
Investigation of electrostriction appliance and its applicationfor bionics flapping aircraft 被引量:6
6
作者 金晓怡 颜景平 +1 位作者 夏雨阳 李德选 《Journal of Southeast University(English Edition)》 EI CAS 2006年第1期82-87,共6页
A novel design for an electrostriction appliance derived from the theory and application of electromagnetics is presented. The working principle, that is the application of gravitation and elasticity together to reali... A novel design for an electrostriction appliance derived from the theory and application of electromagnetics is presented. The working principle, that is the application of gravitation and elasticity together to realize the "shrinking" and "extending" effect from the distortion and transforming power into mechanical energy, is briefly explained. The characteristic parameter relationships are established and the experimental research is performed. Experimental results show that this sort of electrostriction appliance can perform well as regards driving force and beeline displacement, and furthermore, its self-weight is smaller. This makes it suitable for beeline drivers with a high application value, especially for the driver of the bionic appliance. In the application of the electrostriction appliance to a bionics-flapping aircraft, the wings can work with a flapping angle in the range of a certain value by controlling the "shrinking" and "extending" of the electrostriction appliance. It can reduce the startup power and the impact load of the driver. The flapping extent of the wings will change when the voltage which is put into the electrostriction appliance varies. This makes it more flexible as the bionics-flapping aircraft realizes different actions of flying. 展开更多
关键词 electrostriction appliance working principle bionics-flapping aircraft flapping-wing movement
下载PDF
Development of Air Vehicle with Active Flapping and Twisting of Wing 被引量:8
7
作者 Sangyol Yoon Lac-Hyong Kang Sungho Jo 《Journal of Bionic Engineering》 SCIE EI CSCD 2011年第1期1-9,共9页
This paper addresses mechanisms for active flapping and twisting of robotic wings and assesses flying effectiveness as a function of twist angle. Unlike the flapping motion of bird wings, insects generally make a twis... This paper addresses mechanisms for active flapping and twisting of robotic wings and assesses flying effectiveness as a function of twist angle. Unlike the flapping motion of bird wings, insects generally make a twisting motion at the root of their wings while flapping, which makes it possible for them to hover in midair. This work includes the development of a Voice Coil Motor (VCM) because a flapping-wing air vehicle should be assembled with a compact actuator to decrease size and weight. A linkage mechanism is proposed to transform the linear motion of the VCM into the flapping and twisting motions of wings. The assembled flapping-wing air vehicle, whose weight is 2.86 g, produces an average positive vertical force proportional to the twist angle. The force saturates because the twist angle is mechanically limited. This work demonstrates the possibility of developing a flapping-wing air vehicle that can hover in midair using a mechanism that actively twists the roots of wings during flapping. 展开更多
关键词 BIOMIMETIC flapping-wing air vehicle FLAPPING TWISTING voice coil motor linkage mechanism
下载PDF
Obstacle Avoidance of Flapping⁃Wing Air Vehicles Based on Optical Flow and Fuzzy Control 被引量:11
8
作者 FU Qiang WANG Jin +2 位作者 GONG Le WANG Jingyuan HE Wei 《Transactions of Nanjing University of Aeronautics and Astronautics》 EI CSCD 2021年第2期206-215,共10页
The flapping-wing air vehicle(FWAV)is a kind of bio-inspired robot whose wings can flap up and down like bird and insect wings.A vision-based obstacle avoidance method for FWAVs is proposed in this paper.First,the Far... The flapping-wing air vehicle(FWAV)is a kind of bio-inspired robot whose wings can flap up and down like bird and insect wings.A vision-based obstacle avoidance method for FWAVs is proposed in this paper.First,the Farneback algorithm is used to calculate the optical flow field of the first-view video frames taken by the on-board image transmission camera.Based on the optical flow information,a fuzzy obstacle avoidance controller is then designed to generate the FWAV steering commands.Experimental results show that the proposed obstacle avoidance method can accurately identify obstacles and achieve obstacle avoidance for FWAVs. 展开更多
关键词 dense optical flow monocular vision obstacle avoidance flapping-wing air vehicle fuzzy control
下载PDF
Autonomous Formation Flight Control of Large-Sized Flapping-Wing Flying Robots Based on Leader–Follower Strategy 被引量:1
9
作者 Hui Xu Yuanpeng Wang +2 位作者 Erzhen Pan Wenfu Xu Dong Xue 《Journal of Bionic Engineering》 SCIE EI CSCD 2023年第6期2542-2558,共17页
Birds in nature exhibit excellent long-distance flight capabilities through formation flight,which could reduce energy consumption and improve flight efficiency.Inspired by the biological habits of birds,this paper pr... Birds in nature exhibit excellent long-distance flight capabilities through formation flight,which could reduce energy consumption and improve flight efficiency.Inspired by the biological habits of birds,this paper proposes an autonomous formation flight control method for Large-sized Flapping-Wing Flying Robots(LFWFRs),which can enhance their search range and flight efficiency.First,the kinematics model for LFWFRs is established.Then,an autonomous flight controller based on this model is designed,which has multiple flight control modes,including attitude stabilization,course keeping,hovering,and so on.Second,a formation flight control method is proposed based on the leader–follower strategy and periodic characteristics of flapping-wing flight.The up and down fluctuation of the fuselage of each LFWFR during wing flapping is considered in the control algorithm to keep the relative distance,which overcomes the trajectory divergence caused by sensor delay and fuselage fluctuation.Third,typical formation flight modes are realized,including straight formation,circular formation,and switching formation.Finally,the outdoor formation flight experiment is carried out,and the proposed autonomous formation flight control method is verified in real environment. 展开更多
关键词 BIONIC Large-sized flapping-wing flying robot HIT-Phoenix Periodic flight characteristics Formation flight Leader follower strategy
原文传递
Autonomous flight control with different strategies applied during the complete flight cycle for flapping-wing flying robots
10
作者 ZHONG SiPing WANG Song +2 位作者 XU WenFu LIU JunTao PAN ErZhen 《Science China(Technological Sciences)》 SCIE EI CAS CSCD 2023年第11期3343-3354,共12页
Flapping-wing flying robots(FWFRs),especially large-scale robots,have unique advantages in flight efficiency,load capacity,and bionic hiding.Therefore,they have significant potential in environmental detection,disaste... Flapping-wing flying robots(FWFRs),especially large-scale robots,have unique advantages in flight efficiency,load capacity,and bionic hiding.Therefore,they have significant potential in environmental detection,disaster rescue,and anti-terrorism explosion monitoring.However,at present,most FWFRs are operated manually.Some have a certain autonomous ability limited to the cruise stage but not the complete flight cycle.These factors make an FWFR unable to give full play to the advantages of flapping-wing flight to perform autonomous flight tasks.This paper proposed an autonomous flight control method for FWFRs covering the complete process,including the takeoff,cruise,and landing stages.First,the flight characteristics of the mechanical structure of the robot are analyzed.Then,dedicated control strategies are designed following the different control requirements of the defined stages.Furthermore,a hybrid control law is presented by combining different control strategies and objectives.Finally,the proposed method and system are validated through outdoor flight experiments of the HIT-Hawk with a wingspan of 2.3 m,in which the control algorithm is integrated with an onboard embedded controller.The experimental results show that this robot can fly autonomously during the complete flight cycle.The mean value and root mean square(RMS)of the control error are less than 0.8409 and 3.054 m,respectively,when it flies around a circle in an annular area with a radius of 25 m and a width of 10 m. 展开更多
关键词 flapping-wing flying robot autonomous flight attitude and position control outdoor flight experiments
原文传递
Research Progress on Bio‑inspired Flapping‑Wing Rotor Micro Aerial Vehicle Development
11
作者 Yingjun Pan Shijun Guo Xun Huang 《Journal of Bionic Engineering》 SCIE EI CSCD 2024年第4期1621-1643,共23页
Flapping-wing rotor(FWR)is an innovative bio-inspired micro aerial vehicle capable of vertical take-off and landing.This unique design combines active flapping motion and passive wing rotation around a vertical centra... Flapping-wing rotor(FWR)is an innovative bio-inspired micro aerial vehicle capable of vertical take-off and landing.This unique design combines active flapping motion and passive wing rotation around a vertical central shaft to enhance aerodynamic performance.The research on FWR,though relatively new,has contributed to 6%of core journal publications in the micro aerial vehicle field over the past two decades.This paper presents the first comprehensive review of FWR,analysing the current state of the art,key advances,challenges,and future research directions.The review highlights FWR’s distinctive kinematics and aerodynamic superiority compared to traditional flapping wings,fixed wings,and rotary wings,discussing recent breakthroughs in efficient,passive wing pitching and asymmetric stroke amplitude for lift enhancement.Recent experiments and remote-controlled take-off and hovering tests of single and dual-motor FWR models have showcased their effectiveness.The review compares FWR flight performance with well-developed insect-like flapping-wing micro aerial vehicles as the technology readiness level progresses from laboratory to outdoor flight testing,advancing from the initial flight of a 2.6 g prototype to the current free flight of a 60-gram model.The review also presents ongoing research in bionic flexible wing structures,flight stability and control,and transitioning between hovering and cruise flight modes for an FWR,setting the stage for potential applications. 展开更多
关键词 flapping-wing rotor Micro aerial vehicle Bio-inspiration FLIGHT
原文传递
Stable Vertical Takeoff of an Insect-Mimicking Flapping-Wing System Without Guide Implementing Inherent Pitching Stability 被引量:17
12
作者 Hoang Vu Phan Quoc Viet Nguyen +5 位作者 Quang Tri Truong Tien Van Truong Hoon Cheol Park Nam Seo Goo Doyoung Byun Min Jun Kim 《Journal of Bionic Engineering》 SCIE EI CSCD 2012年第4期391-401,共11页
We briefly summarized how to design and fabricate an insect-mimicking flapping-wing system and demonstrate how to implement inherent pitching stability for stable vertical takeoff. The effect of relative locations of ... We briefly summarized how to design and fabricate an insect-mimicking flapping-wing system and demonstrate how to implement inherent pitching stability for stable vertical takeoff. The effect of relative locations of the Center of Gravity (CG) and the mean Aerodynamic Center (AC) on vertical flight was theoretically examined through static force balance considera- tion. We conducted a series of vertical takeoff tests in which the location of the mean AC was determined using an unsteady Blade Element Theory (BET) previously developed by the authors. Sequential images were captured during the takeoff tests using a high-speed camera. The results demonstrated that inherent pitching stability for vertical takeoff can be achieved by controlling the relative position between the CG and the mean AC of the flapping system. 展开更多
关键词 beetle flapping-wing system insect-mimicking insect flight inherent pitching stability vertical takeoff
原文传递
Topology optimization in lightweight design of a 3D-printed flapping-wing micro aerial vehicle 被引量:6
13
作者 Long CHEN Yanlai ZHANG +2 位作者 Zuyong CHEN Jun XU Jianghao Wu 《Chinese Journal of Aeronautics》 SCIE EI CAS CSCD 2020年第12期3206-3219,共14页
Topology optimization is an effective method to obtain a lightweight structure that meets the requirements of structural strength.Whether the optimization results meet the actual needs mainly depends on the accuracy o... Topology optimization is an effective method to obtain a lightweight structure that meets the requirements of structural strength.Whether the optimization results meet the actual needs mainly depends on the accuracy of the material properties and the boundary conditions,especially for a tiny Flapping-wing Micro Aerial Vehicle(FMAV)transmission system manufactured by 3D printing.In this paper,experimental and numerical computation efforts were undertaken to gain a reliable topology optimization method for the bottom of the transmission system.First,the constitutive behavior of the ultraviolet(UV)curable resin used in fabrication was evaluated.Second,a numerical computation model describing further verified via experiments.Topology optimization modeling considering nonlinear factors,e.g.contact,friction and collision,was presented,and the optimization results were verified by both dynamic simulation and experiments.Finally,detailed discussions on different load cases and constraints were presented to clarify their effect on the optimization.Our methods and results presented in this paper may shed light on the lightweight design of a FMAV. 展开更多
关键词 3D printing Finite element analysis flapping-wing micro aerial vehicle Topology optimization Transmission system
原文传递
Bird-mimetic Wing System of Flapping-wing Micro Air Vehicle with Autonomous Flight Control Capability 被引量:6
14
作者 Sriyulianti Widhiarini Ji Hwan Park +6 位作者 Bum Soo Yoon Kwang Joon Yoon ll-Hyun Paik Jong Heon Kim Chan Yik Park Seung Moon Jun Changho Nam 《Journal of Bionic Engineering》 SCIE EI CSCD 2016年第3期458-467,共10页
A micro air vehicle with a bird-mimetic up-down and twisting wing drive system was developed in this study. The Flap- ping-wing Micro Air Vehicle (FMAV), with a 50 cm wingspan and a double-crank drive system, perfor... A micro air vehicle with a bird-mimetic up-down and twisting wing drive system was developed in this study. The Flap- ping-wing Micro Air Vehicle (FMAV), with a 50 cm wingspan and a double-crank drive system, performed successful flights of up to 23 min. The performance and capabilities of the FMAV were enhanced by adapting a number of unique features, such as a bird-mimetic wing shape with a span-wise camber and an up-down and twisting wing drive mechanism with double-crank linkages, This lift-enhancing design by mimicking the flapping mechanism of a bird's wing enabled the 210 g FMAV to fly autonomously in an outdoor field under wind speeds of less than 5 m.s-1. Autonomous flight was enabled by installing a flight control computer with a micro-electro-mechanical gyroscope and accelerometers, along with a micro video camera and an ultralight wireless communication system inside the fuselage. A comprehensive wind tunnel test shows that the FMAV with a high-camber wing and double-crank mechanism generates more lift and less net thrust than the FMAV with a flat wing and single-crank mechanism, which confirms the improved performance of the developed FMAV, as well as the superior slow flying or hovering capabilities of the FMAV with a high-camber wing and double-crank wing drive system. 展开更多
关键词 flapping-wing MAV autonomous flight biomimetic wing double crank wing
原文传递
Generation of Control Moments in an Insect-like Tailless Flapping-wing Micro Air Vehicle by Changing the Stroke-plane Angle 被引量:6
15
作者 Hoang Vu Phan Hoon Cheol Park 《Journal of Bionic Engineering》 SCIE EI CSCD 2016年第3期449-457,共9页
We propose a control moment generator to control the attitude of an insect-like tailless Flapping-wing Micro Air Vehicle (FW-MAV), where the flapping wings simultaneously produce the flight force and control moments... We propose a control moment generator to control the attitude of an insect-like tailless Flapping-wing Micro Air Vehicle (FW-MAV), where the flapping wings simultaneously produce the flight force and control moments. The generator tilts the stroke plane of each wing independently to direct the resultant aerodynamic force in the desired direction to ultimately generate pitch and yaw moments. A roll moment is produced by an additional mechanism that shifts the trailing edge, which changes the wing rotation angles of the two flapping wings and produces an asymmetric thrust. Images of the flapping wings are captured with a high-speed camera and clearly show that the FW-MAV can independently change the stroke planes of its two wings. The measured force and moment data prove that the control moment generator produces reasonable pitch and yaw moments by tilting the stroke plane and realizes a roll moment by shifting the position of the trailing edge at the wing root. 展开更多
关键词 insect-like flapping-wing Micro Air Vehicle (FW-MAV) control mechanism stroke plane beetle flight
原文传递
Effect of Wing Kinematics Modulation on Aerodynamic Force Generation in Hovering Insect-mimicking Flapping-wing Micro Air Vehicle 被引量:3
16
作者 Hoang Vu Phan Quang Tri Truong +1 位作者 Thi Kim Loan Au Hoon Cheol Park 《Journal of Bionic Engineering》 SCIE EI CSCD 2015年第4期539-554,共16页
We investigated the effect of wing kinematics modulation, which was achieved by adjusting the location of trailing-edge constraint at the wing-root, i.e., by adjusting the wing-root offset, on the generation of aerody... We investigated the effect of wing kinematics modulation, which was achieved by adjusting the location of trailing-edge constraint at the wing-root, i.e., by adjusting the wing-root offset, on the generation of aerodynamic forces in a hovering in- sect-mimicking Flapping-Wing Micro Air Vehicle (FW-MAV) by numerical and experimental studies. Three-dimensional wing kinematics measured using three synchronized high-speed cameras revealed a clear difference in the wing rotation angle of a wing section for different wing-root offsets. The extrapolated wing kinematics were in good agreement with the measured ones for various wing-root offsets. The Unsteady Blade Element Theory (UBET) was used to estimate the forces generated by the flapping wings and validated by comparison with results of measurements performed using a load cell. Although the thrust produced by a flapping wing with a wing-root offset of 0.20 c was about 4% less, its force-to-input-power ratio was about 30% and 10% higher than those with the offsets of 0.10 c and 0.15 c, respectively. This result could be explained by analyzing the effective Angle of Attack (AoA) and the force components computed by the UBET. Thus, a flapping wing with a wing-root offset of 0.20 c can be regarded as an optimal twist configuration for the development of the FW-MAV. 展开更多
关键词 wing kinematics flapping-wing MAV biomimetics beetle-mimicking insect flight linear extrapolation
原文传递
Pitching Moment Generation in an Insect-Mimicking Flapping-Wing System 被引量:4
17
作者 Tri Quang Truong Vu Hoang Phan +1 位作者 Sanjay P. Sane Hoon Cheol Park 《Journal of Bionic Engineering》 SCIE EI CSCD 2014年第1期36-51,共16页
Unlike birds, insects lack control surfaces at the tail and hence most insects modify their wing kinematics to produce control forces or moments while flapping their wings. Change of the flapping angle range is one of... Unlike birds, insects lack control surfaces at the tail and hence most insects modify their wing kinematics to produce control forces or moments while flapping their wings. Change of the flapping angle range is one of the ways to modify wing kinematics, resulting in relocation of the mean Aerodynamic force Center (mean AC) and finally creating control moments. In an attempt to mimic this feature, we developed a flapping-wing system that generates a desired pitching moment during flap- ping-wing motion. The system comprises a flapping mechanism that creates a large and symmetric flapping motion in a pair of wings, a flapping angle change mechanism that modifies the flapping angle range, artificial wings, and a power source. From the measured wing kinematics, we have found that the flapping-wing system can properly modify the flapping angle ranges. The measured pitching moments show that the flapping-wing system generates a pitching moment in a desired direction by shifting the flapping angle range. We also demonstrated that the system can in practice change the longitudinal attitude by generating a nonzero pitching moment. 展开更多
关键词 flapping-wing system pitching moment flapping angle unsteady blade element theory mean aerodynamic center center of gravity
原文传递
A Miniature Video Stabilization System for Flapping-Wing Aerial Vehicles 被引量:7
18
作者 Qiang Fu Xinqi Wang +1 位作者 Yao Zou Wei He 《Guidance, Navigation and Control》 2022年第1期1-22,共22页
In this paper,a miniature video stabilization system is designed to deal with the image jitter and motion blur problem for°apping-wing aerial vehicles(FWAVs).First,a light and two-axis pan–tilt(about 13 g)is bui... In this paper,a miniature video stabilization system is designed to deal with the image jitter and motion blur problem for°apping-wing aerial vehicles(FWAVs).First,a light and two-axis pan–tilt(about 13 g)is built for the FWAV to counteract most of the jitter e®ect.Then,an electronic image stabilization method combined with a Micro-Electro Mechanical Systems(MEMSs)gyroscope is proposed to further stabilize the images.Finally,°ight experiment results show that the designed video stabilization system e®ectively improves the quality of aerial videos. 展开更多
关键词 flapping-wing aerial vehicle image jitter pan-tilt MEMS gyroscope video stabilization
原文传递
Development of a Bird-like Flapping-wing Aerial Vehicle with Autonomous Take-off and Landing Capabilities 被引量:2
19
作者 Dongfu Ma Bifeng Song +2 位作者 Zhihe Wang Jianlin Xuan Dong Xue 《Journal of Bionic Engineering》 SCIE EI CSCD 2021年第6期1291-1303,共13页
The lack of autonomous take-off and landing capabilities of bird-like flapping-wing aerial vehicles(BFAVs)seriously restricts their further development and application.Thus,combined with the current research results o... The lack of autonomous take-off and landing capabilities of bird-like flapping-wing aerial vehicles(BFAVs)seriously restricts their further development and application.Thus,combined with the current research results on the autonomous take-off and landing technology of unmanned aerial vehicles,four types of technologies are studied,including jumping take-off and landing technology,taxiing take-off and landing technology,gliding take-off and landing technology,and vertical take-off and landing(VTOL)technology.Based on the analytic hierarchy process(AHP)-comprehensive evaluation method,a fuzzy comprehensive evaluation model for the autonomous take-off and landing scheme of a BFAV is established,and four schemes are evaluated concretely.The results show that under the existing technical conditions,the hybrid layout VTOL scheme is the best.Furthermore,the detailed design and development of the prototype of a BFAV with a four-rotor hybrid layout are carried out,and the vehicle performance is tested.The results prove that through the four-rotor hybrid layout design,the BFAV has good autonomous take-off and landing abilities.The power consumption analysis shows that for a fixed-point reconnaissance mission,when the mission radius is less than 3.38 km,the VTOL type exhibits longer mission duration than the hand-launched type. 展开更多
关键词 Bird-like flapping-wing aerial vehicle(BFAV) Autonomous take-off and landing Take-off mechanism Hybrid layout
原文传递
Flight control of a large-scale flapping-wing flying robotic bird:System development and flight experiment 被引量:1
20
作者 Wenfu XU Erzhen PAN +2 位作者 Juntao LIU Yihong LI Han YUAN 《Chinese Journal of Aeronautics》 SCIE EI CAS CSCD 2022年第2期235-249,共15页
Large-scale flapping-wing flying robotic birds have huge application potential in outdoor tasks,such as military reconnaissance,environment exploring,disaster rescue and so on.In this paper,a multiple modes flight con... Large-scale flapping-wing flying robotic birds have huge application potential in outdoor tasks,such as military reconnaissance,environment exploring,disaster rescue and so on.In this paper,a multiple modes flight control method and system are proposed for a large-scale robotic bird which has 2.3 m wingspan and 650 g mass.Different from small flapping wing aerial vehicle,the mass of its wings cannot be neglected and the flapping frequency are much lower.Therefore,the influence of transient aerodynamics instead of only mean value are considered in attitude estimation and controller design.Moreover,flight attitude and trajectory are highly coupled,and the robot has only three actuators----one for wings flapping and two for tail adjustment,it is very difficult to simultaneously control the attitude and position.Hence,a fuzzy control strategy is addressed to determine the command of each actuator by considering the priority of attitude stabilization,trajectory tracking and the flight safety.Then,the on-board controller is designed based on FreeRTOS.It not only satisfies the strict restrictions on mass,size,power and space but also meets the autonomous,semi-autonomous and manual flight control requirements.Finally,the developed control system was integrated to the robotic prototype,HIT-phoenix.Flight experiments under different environment conditions such as sunny and windy weather were completed to verify the control method and system. 展开更多
关键词 Autonomous flight control flapping-wing Free RTOS HIT-Phoenix Robotic bird
原文传递
上一页 1 2 下一页 到第
使用帮助 返回顶部