X-ray Talbot-Lau interferometer has been used most widely to perform x-ray phase-contrast imaging with a con- ventional low-brilliance x-ray source, and it yields high-sensitivity phase and dark-field images of sample...X-ray Talbot-Lau interferometer has been used most widely to perform x-ray phase-contrast imaging with a con- ventional low-brilliance x-ray source, and it yields high-sensitivity phase and dark-field images of samples producing low absorption contrast, thus beating tremendous potential for future clinical diagnosis. In this work, by changing the accel- erating voltage of the x-ray tube from 35 kV to 45 kV, x-ray phase-contrast imaging of a test sample is performed at each integer value of the accelerating voltage to investigate the characteristic of an x-ray Talbot-Lau interferometer (located in the Institute of Multidisciplinary Research for Advanced Materials, Tohoku University, Japan) versus tube voltage. Ex- perimental results and data analysis show that within a range this x-ray Talbot-Lau interferometer is not sensitive to the accelerating voltage of the tube with a constant fringe visibility of ~ 44%. This x-ray Talbot-Lau interferometer research demonstrates the feasibility of a new dual energy phase-contrast x-ray imaging strategy and the possibility to collect a refraction spectrum.展开更多
Conventional X-ray tube-based cone-beam computed tomography(CX-CBCT) systems have great potential in industrial applications. Such systems can rapidly obtain a three-dimensional(3D) image of an object.Conventional X-r...Conventional X-ray tube-based cone-beam computed tomography(CX-CBCT) systems have great potential in industrial applications. Such systems can rapidly obtain a three-dimensional(3D) image of an object.Conventional X-ray tubes fulfill the requirements for industrial applications, because of their high tube voltage and power. Continuous improvements have been made to CX-CBCT systems, such as imaging time shortening,acquisition strategy optimization, and imaging software development, etc. In this study, a CX-CBCT system is developed. Additionally, some improvements to the CX-CBCT system are proposed based on the hardware conditions of the X-ray tube and detector. A near-detector(ND)geometry condition is employed to obtain a sharper image and larger detection area. An improved acquisition strategy is proposed to simplify operations and reduce total imaging time. In the ND geometry condition, a simplified method called FBP slice stacking(SS-FBP) is proposed, which can be applied to 3D image reconstruction. SS-FBP is timesaving relative to traditional methods. Furthermore, imaging software for the CX-CBCT system is developed in the MATLAB environment. Several imaging experiments were performed. The results suggest that the CX-CBCT system works properly, and that the above improvements are feasible and practical.展开更多
In order to improve the performance of ceramic composite armor it is essential to know the mechanisms during each phase of the projectile–target interaction and their influence on the penetration resistance.Since the...In order to improve the performance of ceramic composite armor it is essential to know the mechanisms during each phase of the projectile–target interaction and their influence on the penetration resistance.Since the view on the crater zone and the tip of a projectile penetrating a ceramic is rapidly getting obscured by damaged material,a flash X-ray technique has to be applied in order to visualize projectile penetration.For this purpose,usually several flash X-ray tubes are arranged around the target and the radiographs are recorded on film.At EMI a flash X-ray imaging method has been developed,which provides up to eight flash radiographs in one experiment.A multi-anode 450 k V flash X-ray tube is utilized with this method.The radiation transmitted through the target is then detected on a fluorescent screen.The fluorescent screen converts the radiograph into an image in the visible wavelength range,which is photographed by means of a high-speed camera.This technique has been applied to visualize and analyze the penetration of 7.62 mm AP projectiles into three different types of Si C ceramics.Two commercial Si C grades and MICASIC(Metal Infiltrated Carbon derived Si C),a C-Si Si C ceramic developed by DLR,have been studied.The influences,not only of the ceramic but also the backing material,on dwell time and projectile erosion have been studied.Penetration curves have been determined and their relevance to the ballistic resistance is discussed.展开更多
A computational fluid dynamics(CFD)model was developed to accurately predict the flash reduction process,which is considered an efficient alternative ironmaking process.Laboratory-scale experiments were conducted in d...A computational fluid dynamics(CFD)model was developed to accurately predict the flash reduction process,which is considered an efficient alternative ironmaking process.Laboratory-scale experiments were conducted in drop tube reactors to verify the accuracy of the CFD model.The reduction degree of ore particles was selected as a critical indicator of model prediction,and the simulated and experimental results were in good agreement.The influencing factors,including the particle size(20–110μm),peak temperature(1250–1550°C),and reductive atmosphere(H_(2)/CO),were also investigated.The height variation lines indicated that small particles(50μm)had a longer residence time(3.6 s)than large particles.CO provided a longer residence time(~1.29 s)than H_(2)(~1.09 s).However,both the experimental and analytical results showed that the reduction degree of particles in CO was significantly lower than that in H2 atmosphere.The optimum experimental particle size and peak temperature for the preparation of high-quality reduced iron were found to be 50μm and 1350°C in H2 atmosphere,and40μm and 1550°C in CO atmosphere,respectively.展开更多
Titanium tube and stainless steel tube plate were welded by an innovative friction welding of tube to tube plate using an external tool (FWTPET). Copper was used as an interlayer for joining the dissimilar materials a...Titanium tube and stainless steel tube plate were welded by an innovative friction welding of tube to tube plate using an external tool (FWTPET). Copper was used as an interlayer for joining the dissimilar materials and also to minimize the effect of intermetallics formed at the joint interface. The process parameters that govern FWTPET process are plunge rate, rotational speed, plunge depth, axial load and flash trap profile. Among them, the flash trap profile of the tube has a significant influence on the joint integrity. Various flash trap profiles like vertical slots, holes, zig-zag holes, and petals were made on the titanium tube welded to the stainless steel tube plate. Macroscopic and microscopic studies reveal defect-free joints. The presence of copper interlayer and intermetallics was evident from X-ray diffraction (XRD), scanning electron microscopy (SEM) and energy dispersive spectroscopy (EDS) studies. The microhardness survey was presented across and along the interface. A novel test procedure called “plunge shear test” was developed to evaluate the joint properties of the welded joints. The highest shear fracture load of 31.58 kN was observed on the sample having petals as flash trap profile. The sheared surfaces were further characterized using SEM for fractography.展开更多
In the present paper, the high velocity impact of 9 mm soft lead projectile on 10 mm and 30 mm thick Eglass/epoxy composites was studied using a 450 kV Flash X-ray radiography(FXR) system. The basic parameters of FXR ...In the present paper, the high velocity impact of 9 mm soft lead projectile on 10 mm and 30 mm thick Eglass/epoxy composites was studied using a 450 kV Flash X-ray radiography(FXR) system. The basic parameters of FXR imaging, such as effect of ratio of target to film(TF) and source to target(ST) distances and X-ray penetration thickness of the composite material were optimized based on clarity and the actual dimensions of the objects. The optimized parameters were used in the FXR imaging of the ballistic event of 9 mm soft projectile on E-glass/epoxy composite. The real time deformation patterns of both the projectile and composite target during the ballistic impact were captured and studied at different time intervals. The notable failure modes of the 10 mm thick target with time include fibre breakage, bulging on the back side, delamination, recovery of the bulging, reverse bulging and its recovery. However, with increase in thickness of the target to 30 mm the only failure mechanism observed is the breaking of fibres. The ballistic impact event was also numerically simulated using commercially available LS-DYNA software. The numerically simulated deformation patterns of the projectile and target at different time intervals are closely matching with the corresponding radiographic images.展开更多
Accurate measurement of flash X-ray energy spectra plays an important role in highenergy flash radiography. In this paper, by virtue of Geant4 toolkit, we simulated the generation and transport of X-ray photons result...Accurate measurement of flash X-ray energy spectra plays an important role in highenergy flash radiography. In this paper, by virtue of Geant4 toolkit, we simulated the generation and transport of X-ray photons resulting from the interaction of a high-energy electron beam with a solid thin target. We obtained the flash X-ray energy spectral distribution in the plane perpendicular to the electron beam incident direction. Our results indicate that the flash X- ray spectrum is almost uniform in the azimuthal direction but is quite different in the radius direction. Specifically, as the radius increases, the incident X-ray dose decreases significantly. Our work paves a theoretical basis for selecting appropriate structures and layout of the spectrometer and facilitates the measurements of flash X-ray energy spectra.展开更多
In the past decade, phase-contrast imaging (PCI) has become a hot research with an increased improvement of the image contrast with respect to conventional absorption radiography. In this paper, effects of tube voltag...In the past decade, phase-contrast imaging (PCI) has become a hot research with an increased improvement of the image contrast with respect to conventional absorption radiography. In this paper, effects of tube voltage (kVp) on propagation-based phase-contrast imaging have been investigated with two types of microfocus x-ray tubes, a conventional sealed x-ray tube with the focal spot size of 13 - 20 μm and an open x-ray tube with minimum focal spot size less than 2 μm. A cooled x-ray CCD detector with the pixel size of 24 μm was used to acquire digital images. Two thin plastic sheets with different thickness were used as radiography phantoms. Two different phenomena were observed for the two x-ray tubes. For the open tube, phase-contrast effect has a slight drop with the increasing of tube voltage, however, it is opposite for the sealed tube. A further investigation indicates that the variation of focal spot size causes the abnormal result for the sealed tube. It also shows that phase-contrast effect is more sensitive to focal spot size than tube voltage.展开更多
Context: Medical imaging has a wide range of applications in today’s society. Basic projectional radiography, CT scans, mammograms and a range of other advanced technologies all use x-rays to create a large number of...Context: Medical imaging has a wide range of applications in today’s society. Basic projectional radiography, CT scans, mammograms and a range of other advanced technologies all use x-rays to create a large number of examinations every day across the world. The most essential component of such medical equipment is the x-ray tube, which creates and produces x-rays. Objective: We describe and investigate an abstract model-geometry of a simple x-ray tube utilizing the open-source software package of BEAMnrc of the EGSnrcmp family, which is well validated by several studies over the years, for high and low energy photons generation. Methodology: Our research focuses on two different electron beam energies: 120 keV and 30 keV. The 120 keV is the typical energy for simple projectional radiographic exams and CT examinations, whereas the 30 keV is the typical energy of mammography. Results: Two different anode materials are used for each case, Gold (Au) and Tungsten (W) for 120 keV because these are the most common in projectional radiography and CT;Molybdenum (Mo) and Rhodium (Rh) for 30 keV because with these targets most mammography exams are carried out. The aim of this work is to show how the BEAMnrc software package can simulate effectively x-ray generation of low-energy photons which are utilized in modern medical imaging procedures. We describe useful information on anode-target characteristics, such as anode angle, anode material, and metal filter materials, based on previous quality studies even by using software other than BEAMnrc. Conclusion: We demonstrate that BEAMnrc can be efficiently used for Monte Carlo modeling of low-energy photons.展开更多
Stoichiometric hydroxyapatite(HA)nanoparticles were synthesized by a wet chemical method.Calcium nitrate tetra hydrate used as calcium source and dibasic ammonium phosphate used as phosphorous source.Calcium nitrate t...Stoichiometric hydroxyapatite(HA)nanoparticles were synthesized by a wet chemical method.Calcium nitrate tetra hydrate used as calcium source and dibasic ammonium phosphate used as phosphorous source.Calcium nitrate tetra hydrate and dibasic ammonium phosphate solutions were prepared by dissolving the salts in distilled water.Stoichiometric hydroxyapatite nanoparticles used by artificial bone powders and synthesized by a wet chemical method were analyzed using EDXRF method.The concentrations of K,Ca,Ti,V,Cr,Fe,Ni,Cu,Sr and Pb for artificial bone powders have been determined.Besides,Calcium contents were evaluated according to the agitation time and temperature in the production process.展开更多
A survey was performed to identify the practice associated with endoscopic placement of naso-jejunal(NJ) tubes. We had a total of 236 responses, of which 228 responded to the frequency of requesting X-rayafter placing...A survey was performed to identify the practice associated with endoscopic placement of naso-jejunal(NJ) tubes. We had a total of 236 responses, of which 228 responded to the frequency of requesting X-rayafter placing NJ tubes. The responses suggested that there was a strong variation in the practice. The practice was independent on clinicians' area of interest, hospital setting or experience in endoscopy. Currently there are no accepted guidelines on this. Hence, we advise hospitals to have robust local guidelines until there is internationally agreed consensus.展开更多
The multi-radiation of X-rays was investigated with special attention to their energy spectrum in a Mather-type plasma focus device (operated with argon gas). The analysis is based on the effect of anomalous resista...The multi-radiation of X-rays was investigated with special attention to their energy spectrum in a Mather-type plasma focus device (operated with argon gas). The analysis is based on the effect of anomalous resistances. To study the energy spectrum, a four-channel diode X-ray spectrometer was used along with a special set of filters. The filters were suitable for detection of medium range X-rays as well as hard X-rays with energy exceeding 30 keV. The results indicate that the anomalous resistivity effect during the post pinch phase may cause multi-radiation of X-rays with a total duration of 300 ± 50 ns. The significant contribution of Cu-Kα was due to the medium range X-rays, nonetheless, hard X-rays with energies greater than 15 keV also participate in the process. The total emitted X-ray energy in the forms of Cu-K and Cu-K/3 was around 0.14 ± 0.02 (J/Sr) and 0.04 ±0.01 (J/Sr), respectively. The total energy of the emitted hard X-ray (〉 15 keV) was around 0.12± 0.02 (J/Sr).展开更多
Pulse X-ray diagnostics is capable of reducing the radiation exposure considerably. As for pulse X-ray diagnostic machines, which form pulses with the duration of 0.1 μs, using them one can get outstanding results in...Pulse X-ray diagnostics is capable of reducing the radiation exposure considerably. As for pulse X-ray diagnostic machines, which form pulses with the duration of 0.1 μs, using them one can get outstanding results in this area. This fact can be explained by the long period of luminophor persistence in intensifying X-ray luminescent screens. In this paper we present experimental data, comparing radiation doses, measured at pulse X-ray apparatus and apparatus of constant radiation.展开更多
Severe solar events manifested by highly energetic X-Ray events accompanied by coronal mass ejections and proton flares caused flash floods in Makkah AI-Mukaramab, A1-Madinah AI-Munawarah and Jeddah. The responses can...Severe solar events manifested by highly energetic X-Ray events accompanied by coronal mass ejections and proton flares caused flash floods in Makkah AI-Mukaramab, A1-Madinah AI-Munawarah and Jeddah. The responses can be prompt, delayed or prompt-delayed, suggesting that the protons entered the troposphere either through the opening of a direct gate in the magnetosphere to the location concer.led due to magnetic reconnection, through the polar gates or through those two paths respectively. The authors suggest that there is a magnetic anomaly in Makkah AI-Mukaramah area which makes it liable to be subjected to flash floods. The width of the solar streams determines the width of the gate opened in the magnetosphere via magnetic reconnection and thus narrow streams affect only one location of the three cities while extended width streams can cause flash floods in all of Makkah AI-Mukaramah AI-Madinah AI Munawarah and Jeddah. In addition, the November 24-26 Jeddah flash flood could be attributed to a prompt event due to a moderately fast solar stream that arrived the earth on those days.展开更多
As use of the lowest acceptable radiation dose during routine diagnostic imaging is important, we determined the optimal tube current without degradation of low-contrast detectability on abdominal multi-detector row C...As use of the lowest acceptable radiation dose during routine diagnostic imaging is important, we determined the optimal tube current without degradation of low-contrast detectability on abdominal multi-detector row CT (MDCT). CT scanning was performed with a Catphan®?500 phantom. The optimal tube current was 300 mA on 64-MDCT and 160 mA on 8-MDCT, with a fixed voltage of 120 kV. Reduction of the radiation dose in abdominal CT scanning by lowering the tube current proved to be feasible.展开更多
基金Project supported by the Major State Basic Research Development Program of China(Grant No.2012CB825800)the Science Fund for Creative Research Groups,China(Grant No.11321503)+1 种基金the National Natural Science Foundation of China(Grant Nos.11179004,10979055,11205189,and 11205157)the Japan–Asia Youth Exchange Program in Science(SAKURA Exchange Program in Science)Administered by the Japan Science and Technology Agency
文摘X-ray Talbot-Lau interferometer has been used most widely to perform x-ray phase-contrast imaging with a con- ventional low-brilliance x-ray source, and it yields high-sensitivity phase and dark-field images of samples producing low absorption contrast, thus beating tremendous potential for future clinical diagnosis. In this work, by changing the accel- erating voltage of the x-ray tube from 35 kV to 45 kV, x-ray phase-contrast imaging of a test sample is performed at each integer value of the accelerating voltage to investigate the characteristic of an x-ray Talbot-Lau interferometer (located in the Institute of Multidisciplinary Research for Advanced Materials, Tohoku University, Japan) versus tube voltage. Ex- perimental results and data analysis show that within a range this x-ray Talbot-Lau interferometer is not sensitive to the accelerating voltage of the tube with a constant fringe visibility of ~ 44%. This x-ray Talbot-Lau interferometer research demonstrates the feasibility of a new dual energy phase-contrast x-ray imaging strategy and the possibility to collect a refraction spectrum.
基金supported by the Fundamental Research Funds for the Central Universities(Nos.lzujbky-2016-208 and lzujbky-2016-32)
文摘Conventional X-ray tube-based cone-beam computed tomography(CX-CBCT) systems have great potential in industrial applications. Such systems can rapidly obtain a three-dimensional(3D) image of an object.Conventional X-ray tubes fulfill the requirements for industrial applications, because of their high tube voltage and power. Continuous improvements have been made to CX-CBCT systems, such as imaging time shortening,acquisition strategy optimization, and imaging software development, etc. In this study, a CX-CBCT system is developed. Additionally, some improvements to the CX-CBCT system are proposed based on the hardware conditions of the X-ray tube and detector. A near-detector(ND)geometry condition is employed to obtain a sharper image and larger detection area. An improved acquisition strategy is proposed to simplify operations and reduce total imaging time. In the ND geometry condition, a simplified method called FBP slice stacking(SS-FBP) is proposed, which can be applied to 3D image reconstruction. SS-FBP is timesaving relative to traditional methods. Furthermore, imaging software for the CX-CBCT system is developed in the MATLAB environment. Several imaging experiments were performed. The results suggest that the CX-CBCT system works properly, and that the above improvements are feasible and practical.
基金financial support of the study by the Bundeswehr Research Institute for Materials, Fuels and Lubricants (WIWe B) (grant number E/E210/AB015/9F120)
文摘In order to improve the performance of ceramic composite armor it is essential to know the mechanisms during each phase of the projectile–target interaction and their influence on the penetration resistance.Since the view on the crater zone and the tip of a projectile penetrating a ceramic is rapidly getting obscured by damaged material,a flash X-ray technique has to be applied in order to visualize projectile penetration.For this purpose,usually several flash X-ray tubes are arranged around the target and the radiographs are recorded on film.At EMI a flash X-ray imaging method has been developed,which provides up to eight flash radiographs in one experiment.A multi-anode 450 k V flash X-ray tube is utilized with this method.The radiation transmitted through the target is then detected on a fluorescent screen.The fluorescent screen converts the radiograph into an image in the visible wavelength range,which is photographed by means of a high-speed camera.This technique has been applied to visualize and analyze the penetration of 7.62 mm AP projectiles into three different types of Si C ceramics.Two commercial Si C grades and MICASIC(Metal Infiltrated Carbon derived Si C),a C-Si Si C ceramic developed by DLR,have been studied.The influences,not only of the ceramic but also the backing material,on dwell time and projectile erosion have been studied.Penetration curves have been determined and their relevance to the ballistic resistance is discussed.
基金financially supported by the National Key Research and Development Project(No.2016YFB0601304)the National Natural Science Foundation of China(No.51804030)。
文摘A computational fluid dynamics(CFD)model was developed to accurately predict the flash reduction process,which is considered an efficient alternative ironmaking process.Laboratory-scale experiments were conducted in drop tube reactors to verify the accuracy of the CFD model.The reduction degree of ore particles was selected as a critical indicator of model prediction,and the simulated and experimental results were in good agreement.The influencing factors,including the particle size(20–110μm),peak temperature(1250–1550°C),and reductive atmosphere(H_(2)/CO),were also investigated.The height variation lines indicated that small particles(50μm)had a longer residence time(3.6 s)than large particles.CO provided a longer residence time(~1.29 s)than H_(2)(~1.09 s).However,both the experimental and analytical results showed that the reduction degree of particles in CO was significantly lower than that in H2 atmosphere.The optimum experimental particle size and peak temperature for the preparation of high-quality reduced iron were found to be 50μm and 1350°C in H2 atmosphere,and40μm and 1550°C in CO atmosphere,respectively.
基金financial support provided by UGC-DAE-CSR (CSR-KN/CRS-04/201213/738) through fellowship
文摘Titanium tube and stainless steel tube plate were welded by an innovative friction welding of tube to tube plate using an external tool (FWTPET). Copper was used as an interlayer for joining the dissimilar materials and also to minimize the effect of intermetallics formed at the joint interface. The process parameters that govern FWTPET process are plunge rate, rotational speed, plunge depth, axial load and flash trap profile. Among them, the flash trap profile of the tube has a significant influence on the joint integrity. Various flash trap profiles like vertical slots, holes, zig-zag holes, and petals were made on the titanium tube welded to the stainless steel tube plate. Macroscopic and microscopic studies reveal defect-free joints. The presence of copper interlayer and intermetallics was evident from X-ray diffraction (XRD), scanning electron microscopy (SEM) and energy dispersive spectroscopy (EDS) studies. The microhardness survey was presented across and along the interface. A novel test procedure called “plunge shear test” was developed to evaluate the joint properties of the welded joints. The highest shear fracture load of 31.58 kN was observed on the sample having petals as flash trap profile. The sheared surfaces were further characterized using SEM for fractography.
文摘In the present paper, the high velocity impact of 9 mm soft lead projectile on 10 mm and 30 mm thick Eglass/epoxy composites was studied using a 450 kV Flash X-ray radiography(FXR) system. The basic parameters of FXR imaging, such as effect of ratio of target to film(TF) and source to target(ST) distances and X-ray penetration thickness of the composite material were optimized based on clarity and the actual dimensions of the objects. The optimized parameters were used in the FXR imaging of the ballistic event of 9 mm soft projectile on E-glass/epoxy composite. The real time deformation patterns of both the projectile and composite target during the ballistic impact were captured and studied at different time intervals. The notable failure modes of the 10 mm thick target with time include fibre breakage, bulging on the back side, delamination, recovery of the bulging, reverse bulging and its recovery. However, with increase in thickness of the target to 30 mm the only failure mechanism observed is the breaking of fibres. The ballistic impact event was also numerically simulated using commercially available LS-DYNA software. The numerically simulated deformation patterns of the projectile and target at different time intervals are closely matching with the corresponding radiographic images.
基金supported by State Key Laboratory of Particle Detection & ElectronicsNational Natural Science Foundation of China(No.10976028)
文摘Accurate measurement of flash X-ray energy spectra plays an important role in highenergy flash radiography. In this paper, by virtue of Geant4 toolkit, we simulated the generation and transport of X-ray photons resulting from the interaction of a high-energy electron beam with a solid thin target. We obtained the flash X-ray energy spectral distribution in the plane perpendicular to the electron beam incident direction. Our results indicate that the flash X- ray spectrum is almost uniform in the azimuthal direction but is quite different in the radius direction. Specifically, as the radius increases, the incident X-ray dose decreases significantly. Our work paves a theoretical basis for selecting appropriate structures and layout of the spectrometer and facilitates the measurements of flash X-ray energy spectra.
文摘In the past decade, phase-contrast imaging (PCI) has become a hot research with an increased improvement of the image contrast with respect to conventional absorption radiography. In this paper, effects of tube voltage (kVp) on propagation-based phase-contrast imaging have been investigated with two types of microfocus x-ray tubes, a conventional sealed x-ray tube with the focal spot size of 13 - 20 μm and an open x-ray tube with minimum focal spot size less than 2 μm. A cooled x-ray CCD detector with the pixel size of 24 μm was used to acquire digital images. Two thin plastic sheets with different thickness were used as radiography phantoms. Two different phenomena were observed for the two x-ray tubes. For the open tube, phase-contrast effect has a slight drop with the increasing of tube voltage, however, it is opposite for the sealed tube. A further investigation indicates that the variation of focal spot size causes the abnormal result for the sealed tube. It also shows that phase-contrast effect is more sensitive to focal spot size than tube voltage.
文摘Context: Medical imaging has a wide range of applications in today’s society. Basic projectional radiography, CT scans, mammograms and a range of other advanced technologies all use x-rays to create a large number of examinations every day across the world. The most essential component of such medical equipment is the x-ray tube, which creates and produces x-rays. Objective: We describe and investigate an abstract model-geometry of a simple x-ray tube utilizing the open-source software package of BEAMnrc of the EGSnrcmp family, which is well validated by several studies over the years, for high and low energy photons generation. Methodology: Our research focuses on two different electron beam energies: 120 keV and 30 keV. The 120 keV is the typical energy for simple projectional radiographic exams and CT examinations, whereas the 30 keV is the typical energy of mammography. Results: Two different anode materials are used for each case, Gold (Au) and Tungsten (W) for 120 keV because these are the most common in projectional radiography and CT;Molybdenum (Mo) and Rhodium (Rh) for 30 keV because with these targets most mammography exams are carried out. The aim of this work is to show how the BEAMnrc software package can simulate effectively x-ray generation of low-energy photons which are utilized in modern medical imaging procedures. We describe useful information on anode-target characteristics, such as anode angle, anode material, and metal filter materials, based on previous quality studies even by using software other than BEAMnrc. Conclusion: We demonstrate that BEAMnrc can be efficiently used for Monte Carlo modeling of low-energy photons.
文摘Stoichiometric hydroxyapatite(HA)nanoparticles were synthesized by a wet chemical method.Calcium nitrate tetra hydrate used as calcium source and dibasic ammonium phosphate used as phosphorous source.Calcium nitrate tetra hydrate and dibasic ammonium phosphate solutions were prepared by dissolving the salts in distilled water.Stoichiometric hydroxyapatite nanoparticles used by artificial bone powders and synthesized by a wet chemical method were analyzed using EDXRF method.The concentrations of K,Ca,Ti,V,Cr,Fe,Ni,Cu,Sr and Pb for artificial bone powders have been determined.Besides,Calcium contents were evaluated according to the agitation time and temperature in the production process.
文摘A survey was performed to identify the practice associated with endoscopic placement of naso-jejunal(NJ) tubes. We had a total of 236 responses, of which 228 responded to the frequency of requesting X-rayafter placing NJ tubes. The responses suggested that there was a strong variation in the practice. The practice was independent on clinicians' area of interest, hospital setting or experience in endoscopy. Currently there are no accepted guidelines on this. Hence, we advise hospitals to have robust local guidelines until there is internationally agreed consensus.
文摘The multi-radiation of X-rays was investigated with special attention to their energy spectrum in a Mather-type plasma focus device (operated with argon gas). The analysis is based on the effect of anomalous resistances. To study the energy spectrum, a four-channel diode X-ray spectrometer was used along with a special set of filters. The filters were suitable for detection of medium range X-rays as well as hard X-rays with energy exceeding 30 keV. The results indicate that the anomalous resistivity effect during the post pinch phase may cause multi-radiation of X-rays with a total duration of 300 ± 50 ns. The significant contribution of Cu-Kα was due to the medium range X-rays, nonetheless, hard X-rays with energies greater than 15 keV also participate in the process. The total emitted X-ray energy in the forms of Cu-K and Cu-K/3 was around 0.14 ± 0.02 (J/Sr) and 0.04 ±0.01 (J/Sr), respectively. The total energy of the emitted hard X-ray (〉 15 keV) was around 0.12± 0.02 (J/Sr).
文摘Pulse X-ray diagnostics is capable of reducing the radiation exposure considerably. As for pulse X-ray diagnostic machines, which form pulses with the duration of 0.1 μs, using them one can get outstanding results in this area. This fact can be explained by the long period of luminophor persistence in intensifying X-ray luminescent screens. In this paper we present experimental data, comparing radiation doses, measured at pulse X-ray apparatus and apparatus of constant radiation.
文摘Severe solar events manifested by highly energetic X-Ray events accompanied by coronal mass ejections and proton flares caused flash floods in Makkah AI-Mukaramab, A1-Madinah AI-Munawarah and Jeddah. The responses can be prompt, delayed or prompt-delayed, suggesting that the protons entered the troposphere either through the opening of a direct gate in the magnetosphere to the location concer.led due to magnetic reconnection, through the polar gates or through those two paths respectively. The authors suggest that there is a magnetic anomaly in Makkah AI-Mukaramah area which makes it liable to be subjected to flash floods. The width of the solar streams determines the width of the gate opened in the magnetosphere via magnetic reconnection and thus narrow streams affect only one location of the three cities while extended width streams can cause flash floods in all of Makkah AI-Mukaramah AI-Madinah AI Munawarah and Jeddah. In addition, the November 24-26 Jeddah flash flood could be attributed to a prompt event due to a moderately fast solar stream that arrived the earth on those days.
文摘As use of the lowest acceptable radiation dose during routine diagnostic imaging is important, we determined the optimal tube current without degradation of low-contrast detectability on abdominal multi-detector row CT (MDCT). CT scanning was performed with a Catphan®?500 phantom. The optimal tube current was 300 mA on 64-MDCT and 160 mA on 8-MDCT, with a fixed voltage of 120 kV. Reduction of the radiation dose in abdominal CT scanning by lowering the tube current proved to be feasible.