Mid-spatial frequency wavefront deformation can be deleterious for the operation of high-energy laser systems. When fluid cooled high-repetition-rate amplifiers are used, the coolant flow is likely to induce such detr...Mid-spatial frequency wavefront deformation can be deleterious for the operation of high-energy laser systems. When fluid cooled high-repetition-rate amplifiers are used, the coolant flow is likely to induce such detrimental mid-spatial frequency wavefront deformations. Here, we describe the design and performance of a 90 mm × 90 mm aperture, liquid-cooled Nd:phosphate split-slab laser amplifier pumped by flash-lamps. The performance of the system is evaluated in terms of wavefront aberration and gain at repetition rates down to 1 shot per minute. The results show that this single cooled split-slab system exhibits low wavefront distortions in the medium to large period range, compatible with a focus on target, and despite the use of liquid coolant traversed by both pump and amplified wavelengths. This makes it a potential candidate for applications in large high-energy laser facilities.展开更多
转镜调Q无插入损耗,是获得窄脉冲、高峰值功率输出激光的直接方式。纳秒脉冲需要使用高速转镜调Q,并精准控制电机转速与氙灯放电延时,以使激光介质上能级粒子数反转最大,获得最大激光能量输出。本文设计了以Arduino mega 2560单片机为...转镜调Q无插入损耗,是获得窄脉冲、高峰值功率输出激光的直接方式。纳秒脉冲需要使用高速转镜调Q,并精准控制电机转速与氙灯放电延时,以使激光介质上能级粒子数反转最大,获得最大激光能量输出。本文设计了以Arduino mega 2560单片机为核心的高速转镜调Q控制系统,通过精确单片机解析串口屏指令控制激光电源的充放电和高速电机启停,同时通过对转镜脉冲信号整合降频控制氙灯放电时刻,实现对延迟时间的精准控制,实现了灯泵Er,Cr:YSGG激光纳秒窄脉冲调Q输出。在5 Hz重复频率下,转镜转速为650 r/s时,获得的最高单脉冲激光能量为45.7 mJ、脉冲宽度为86.2 ns,相应的峰值功率为530.2 kW。展开更多
基金partially funded by the European Commission(No.3404410,ERDF No.2663710)the‘Conseil Régional de Nouvelle Aquitaine’(No.DEE2104-2019-5131820,CPER No.16004205)。
文摘Mid-spatial frequency wavefront deformation can be deleterious for the operation of high-energy laser systems. When fluid cooled high-repetition-rate amplifiers are used, the coolant flow is likely to induce such detrimental mid-spatial frequency wavefront deformations. Here, we describe the design and performance of a 90 mm × 90 mm aperture, liquid-cooled Nd:phosphate split-slab laser amplifier pumped by flash-lamps. The performance of the system is evaluated in terms of wavefront aberration and gain at repetition rates down to 1 shot per minute. The results show that this single cooled split-slab system exhibits low wavefront distortions in the medium to large period range, compatible with a focus on target, and despite the use of liquid coolant traversed by both pump and amplified wavelengths. This makes it a potential candidate for applications in large high-energy laser facilities.