In this work, we choose Nb3Al/Nb3Sn as a new test case for flat/steep band model of superconductivity. Based on the density functional theory in the generalized gradient approximation, the electronic structure of Nb3A...In this work, we choose Nb3Al/Nb3Sn as a new test case for flat/steep band model of superconductivity. Based on the density functional theory in the generalized gradient approximation, the electronic structure of Nb3Al/ Nb3Sn has been studied. The obtained results agree well with those of the earlier studies and show clearly fiat bands around the Fermi level. The steep bands as characterized in this work locate around the M point in the first Brillouin zone. The obtained results reveal that Nb3Al/Nb3Sn fits more to the "Flat/steep" band model than to the van-Hove singularity scenario. The fiat/steep band condition for superconductivity implies a different thermodynamic behavior of superconductors other than that predicted from the conventional BCS theory. This observation sets up an indicator for selecting a suitable superconductor when its large-scale industrial use is needed, for example, in superconducting maglev system or ITER project.展开更多
We show that a suitable combination of flat-band ferromagnetism,geometry and nontrivial electronic band topology can give rise to itinerant topological magnons.An SU(2) symmetric topological Hubbard model with nearly ...We show that a suitable combination of flat-band ferromagnetism,geometry and nontrivial electronic band topology can give rise to itinerant topological magnons.An SU(2) symmetric topological Hubbard model with nearly flat electronic bands,on a Kagome lattice,is considered as the prototype.This model exhibits ferromagnetic order when the lowest electronic band is half-filled.Using the numerical exact diagonalization method with a projection onto this nearly flat band,we can obtain the magnonic spectra.In the flat-band limit,the spectra exhibit distinct dispersions with Dirac points,similar to those of free electrons with isotropic hoppings,or a local spin magnet with pure ferromagnetic Heisenberg exchanges on the same geometry.Significantly,the non-flatness of the electronic band may induce a topological gap at the Dirac points,leading to a magnonic band with a nonzero Chern number.More intriguingly,this magnonic Chern number changes its sign when the topological index of the electronic band is reversed,suggesting that the nontrivial topology of the magnonic band is related to its underlying electronic band.Our work suggests interesting directions for the further exploration of,and searches for,itinerant topological magnons.展开更多
In contrast to the normal operator approach, our reverse approach starts from the state vector in the Hilbert space. In this work, we give a concise introduction to our recent work in this aspect. By postulating a sup...In contrast to the normal operator approach, our reverse approach starts from the state vector in the Hilbert space. In this work, we give a concise introduction to our recent work in this aspect. By postulating a superconducting state (SCS) to be a generalized coherent state (GCS) constructed by pure group theory, we show that some important properties such as the Cooper pairs of the SCS naturally appear in this new framework without resorting to the microscopic origin. This latter characteristic renders this theory a more universal feature in comparison with other theories developed by the operator approach. The studies on the residue of the pair-wise constraint due to the collapse of the GCS lead to a “flat/steep” band model for searching new superconductors.展开更多
基金financially supported by the Science Foundation for International Cooperation of Sichuan Province (2014HH0016)the Fundamental Research Funds for the Central Universities (SWJTU2014: A0920502051113-10000)National Magnetic Confinement Fusion Science Program (2011GB112001)
文摘In this work, we choose Nb3Al/Nb3Sn as a new test case for flat/steep band model of superconductivity. Based on the density functional theory in the generalized gradient approximation, the electronic structure of Nb3Al/ Nb3Sn has been studied. The obtained results agree well with those of the earlier studies and show clearly fiat bands around the Fermi level. The steep bands as characterized in this work locate around the M point in the first Brillouin zone. The obtained results reveal that Nb3Al/Nb3Sn fits more to the "Flat/steep" band model than to the van-Hove singularity scenario. The fiat/steep band condition for superconductivity implies a different thermodynamic behavior of superconductors other than that predicted from the conventional BCS theory. This observation sets up an indicator for selecting a suitable superconductor when its large-scale industrial use is needed, for example, in superconducting maglev system or ITER project.
基金Supported by the National Natural Science Foundation of China (Grant No.11774152)National Key R&D Program of China(Grant No.2016YFA0300401)。
文摘We show that a suitable combination of flat-band ferromagnetism,geometry and nontrivial electronic band topology can give rise to itinerant topological magnons.An SU(2) symmetric topological Hubbard model with nearly flat electronic bands,on a Kagome lattice,is considered as the prototype.This model exhibits ferromagnetic order when the lowest electronic band is half-filled.Using the numerical exact diagonalization method with a projection onto this nearly flat band,we can obtain the magnonic spectra.In the flat-band limit,the spectra exhibit distinct dispersions with Dirac points,similar to those of free electrons with isotropic hoppings,or a local spin magnet with pure ferromagnetic Heisenberg exchanges on the same geometry.Significantly,the non-flatness of the electronic band may induce a topological gap at the Dirac points,leading to a magnonic band with a nonzero Chern number.More intriguingly,this magnonic Chern number changes its sign when the topological index of the electronic band is reversed,suggesting that the nontrivial topology of the magnonic band is related to its underlying electronic band.Our work suggests interesting directions for the further exploration of,and searches for,itinerant topological magnons.
文摘In contrast to the normal operator approach, our reverse approach starts from the state vector in the Hilbert space. In this work, we give a concise introduction to our recent work in this aspect. By postulating a superconducting state (SCS) to be a generalized coherent state (GCS) constructed by pure group theory, we show that some important properties such as the Cooper pairs of the SCS naturally appear in this new framework without resorting to the microscopic origin. This latter characteristic renders this theory a more universal feature in comparison with other theories developed by the operator approach. The studies on the residue of the pair-wise constraint due to the collapse of the GCS lead to a “flat/steep” band model for searching new superconductors.
基金supported by the National Key Research and Development Program of China(Grant No.2019YFA0705400)National NSF of China(Grant Nos.12261160367,12225205,and 22073048)+1 种基金A Project Funded by the Priority Academic Program Development of Jiangsu Higher Education Institutions,Natural Science Foundation of Jiangsu Province(Grant No.BK20220872)Jiangsu Funding Program for Excellent postdoctoral talent(Grant No.2022ZB232),The computations were in part performed at the Highperformance Computational Center at NUAA.