Flat lenses are designed by means of graded negative refractive index-based photonic crystals (PCs) constructed using air-holes tuned with different shapes. By gradually modifying the filling factor along the transv...Flat lenses are designed by means of graded negative refractive index-based photonic crystals (PCs) constructed using air-holes tuned with different shapes. By gradually modifying the filling factor along the transverse direction, we obtain the graded negative index-based lenses for the purpose of focusing an incident plane wave. The finite-difference and timedomain (FDTD) algorithm is adopted for numerical calculation. Our calculation results indicate that these lenses can finely focus incident plane waves. Moreover, for the same size of air-holes, the focusing properties of the lens with rectangular air-holes are better than those with the other shaped air-holes. The graded negative index PCs lenses could possibly enable new applications in optoelectronic systems.展开更多
Graded negative refractive index-based photonic crystal (PC) lenses are designed by gradually modifying the sizes of air holes along the transverse direction for focusing the incident plane wave. To study the tunabi...Graded negative refractive index-based photonic crystal (PC) lenses are designed by gradually modifying the sizes of air holes along the transverse direction for focusing the incident plane wave. To study the tunability of the graded negative index-based PC, we introduce filling factor A, gradually tune the filling factor, and use the finite-difference and time-domain (FDTD) algorithm for numerical calculation. Our calculation results indicate that the focal length and the spot size increase with A increasing. For the same A value, the focal length of a PC with elliptical air holes is the longest, and those of PC with square and rectangular air holes are the shortest. Moreover, when the focal length is greater than 1 ~xm, the focal parameters of the PC are highly insensitive to the variation of A. When the focal length is less than 1 gm, the PC lenses have higher transmittances and all well focus with a beam spot size breaking the diffraction limit. This feature possibly makes the graded negative index-based PC lenses have some new applications in optoelectronic systems.展开更多
基金Project supported by the National Natural Science Foundation of China (Grant Nos.11079014,61077010,90923036,and 60977041)the 100-Talent Program of the Chinese Academy of Sciences
文摘Flat lenses are designed by means of graded negative refractive index-based photonic crystals (PCs) constructed using air-holes tuned with different shapes. By gradually modifying the filling factor along the transverse direction, we obtain the graded negative index-based lenses for the purpose of focusing an incident plane wave. The finite-difference and timedomain (FDTD) algorithm is adopted for numerical calculation. Our calculation results indicate that these lenses can finely focus incident plane waves. Moreover, for the same size of air-holes, the focusing properties of the lens with rectangular air-holes are better than those with the other shaped air-holes. The graded negative index PCs lenses could possibly enable new applications in optoelectronic systems.
基金supported by the National Natural Science Foundation of China (Grant Nos. 11079014 and 61077010)
文摘Graded negative refractive index-based photonic crystal (PC) lenses are designed by gradually modifying the sizes of air holes along the transverse direction for focusing the incident plane wave. To study the tunability of the graded negative index-based PC, we introduce filling factor A, gradually tune the filling factor, and use the finite-difference and time-domain (FDTD) algorithm for numerical calculation. Our calculation results indicate that the focal length and the spot size increase with A increasing. For the same A value, the focal length of a PC with elliptical air holes is the longest, and those of PC with square and rectangular air holes are the shortest. Moreover, when the focal length is greater than 1 ~xm, the focal parameters of the PC are highly insensitive to the variation of A. When the focal length is less than 1 gm, the PC lenses have higher transmittances and all well focus with a beam spot size breaking the diffraction limit. This feature possibly makes the graded negative index-based PC lenses have some new applications in optoelectronic systems.