Numerical study on near wake flows of a flat plate in three kinds of oncoming flows is made by using the discrete vortex model and improved vorticity creation method. For steady oncoming flow, both gross and detailed ...Numerical study on near wake flows of a flat plate in three kinds of oncoming flows is made by using the discrete vortex model and improved vorticity creation method. For steady oncoming flow, both gross and detailed features of the wake flow are calculated and discussed. Then, in harmonic oscillatory oncoming flow two different wake flow patterns with K_c=2,4 and 10 are obtained respectively. Our results present a new wake flow pattern for low K_c numbers (K_c<5) describing vortex shedding, pairing and moving in a period of the oscillatory flow starting from rest. The calculated drag and inertia force coefficients are closer to experimental data from the U-tube than the previous results of vortex simulation. For in-line combined oncoming flow the vortex lock-in and dynamic characteristics are simulated. The results are shown to be in good agreement with experiments.展开更多
Transient operations are commonly founded in fluid machineries such as the starting, stopping, and variations of rotor speeds, etc. Flow generated from a started fiat plate is of fundamental importance. Experiments ha...Transient operations are commonly founded in fluid machineries such as the starting, stopping, and variations of rotor speeds, etc. Flow generated from a started fiat plate is of fundamental importance. Experiments have been done to observe the flow evolution in current researches. And in order to explore the flow in more detailed scale, some vortex methods with high resolution and other numerical methods were developed to solve various related problems by some researchers. But the promotion of vortex method to engineering application is rare due to its complexity and difficulty in specifying the boundary conditions. In order to build up a method of numerical study for such problems, a simplified model is built up with a flat plate. The development of two-dimensional viscous incompressible flow generated from an impulsively started and uniformly accelerated infinitesimally thin flat plate is simulated numerically. A dynamic mesh(DM) method based on the spring analogue and local remeshing is applied to realize the mesh motion caused by the started plate. Researches show that the mesh quality will decline under large grid shear force during the updating process. To conquer this problem, a region near the plate is separated to guarantee the mesh quality at location of interest which is the innovation of the present paper. All computations at least cover a period during which the plate translates 6 times its length. The simulated instantaneous velocity profiles, flow structures and drag coefficients under several Reynolds numbers (20 ≤ Re ≤ 126) and accelerations (20 m/s2≤ a ≤ 152 m/s2) are presented and compared with existing results in literatures. Comparisons are found to be satisfactory, confirming the validity of the current proposed method(region separated DM). The proposed DM method is firstly used to study the transient flow generated from a started flat plate and can be used in further study of transient characteristics during transient operations of turbo machineries.展开更多
The pulsatile electroosmotic flow (PEOF) of a Maxwell fluid in a parallel flat plate microchannel with asymmetric wall zeta potentials is theoretically analyzed. By combining the linear Maxwell viscoelastic model, t...The pulsatile electroosmotic flow (PEOF) of a Maxwell fluid in a parallel flat plate microchannel with asymmetric wall zeta potentials is theoretically analyzed. By combining the linear Maxwell viscoelastic model, the Cauchy equation, and the electric field solution obtained from the linearized PoissomBoltzmann equation, a hyperbolic par- tial differential equation is obtained to derive the flow field. The PEOF is controlled by the angular Reynolds number, the ratio of the zeta potentials of the microchannel walls, the electrokinetic parameter, and the elasticity number. The main results obtained from this analysis show strong oscillations in the velocity profiles when the values of the elas- ticity number and the angular Reynolds number increase due to the competition among the elastic, viscous, inertial, and electric forces in the flow.展开更多
In this paper, using the integration method, it is sought to solve the problem for the laminar boundary_layer on a flat plate. At first, a trial function of the velocity profile which satisfies the basical boundary co...In this paper, using the integration method, it is sought to solve the problem for the laminar boundary_layer on a flat plate. At first, a trial function of the velocity profile which satisfies the basical boundary conditions is selected. The coefficients in the trial function awaiting decision are decided by using some numerical results of the boundary_layer differential equations. It is similar to the method proposed by Peng Yichuan, but the former is simpler. According to the method proposed by Peng, when the awaiting decision coefficients of the trial function are decided, it is sought to solve a third power algebraic equation. On the other hand, in this paper, there is only need for solving a linear algebraic equation. Moreover, the accuracy of the results of this paper is higher than that of Peng.展开更多
On the basis of hypothesis of replacement and the vector formula of Newton’s law for a viscous fluid the way of a finding of resistance a slow flow by an incompressible fluid of bodies of the various form is represen...On the basis of hypothesis of replacement and the vector formula of Newton’s law for a viscous fluid the way of a finding of resistance a slow flow by an incompressible fluid of bodies of the various form is represented. Application of an offered way to calculation of a flow of various bodies is shown: a sphere, a cylinder, a oblong ellipsoid, a flat plate. Comparison with results of other authors is given.展开更多
基金The project supported by National Natural Science Fundation of China and LNM of Institute of Mechanics. CAS .
文摘Numerical study on near wake flows of a flat plate in three kinds of oncoming flows is made by using the discrete vortex model and improved vorticity creation method. For steady oncoming flow, both gross and detailed features of the wake flow are calculated and discussed. Then, in harmonic oscillatory oncoming flow two different wake flow patterns with K_c=2,4 and 10 are obtained respectively. Our results present a new wake flow pattern for low K_c numbers (K_c<5) describing vortex shedding, pairing and moving in a period of the oscillatory flow starting from rest. The calculated drag and inertia force coefficients are closer to experimental data from the U-tube than the previous results of vortex simulation. For in-line combined oncoming flow the vortex lock-in and dynamic characteristics are simulated. The results are shown to be in good agreement with experiments.
基金supported by National Natural Science Foundation of China(Grant Nos. 50979095, 51176168, 50906074)China Postdoctoral Science Foundation(Grant Nos. 20100471697, 201104713)
文摘Transient operations are commonly founded in fluid machineries such as the starting, stopping, and variations of rotor speeds, etc. Flow generated from a started fiat plate is of fundamental importance. Experiments have been done to observe the flow evolution in current researches. And in order to explore the flow in more detailed scale, some vortex methods with high resolution and other numerical methods were developed to solve various related problems by some researchers. But the promotion of vortex method to engineering application is rare due to its complexity and difficulty in specifying the boundary conditions. In order to build up a method of numerical study for such problems, a simplified model is built up with a flat plate. The development of two-dimensional viscous incompressible flow generated from an impulsively started and uniformly accelerated infinitesimally thin flat plate is simulated numerically. A dynamic mesh(DM) method based on the spring analogue and local remeshing is applied to realize the mesh motion caused by the started plate. Researches show that the mesh quality will decline under large grid shear force during the updating process. To conquer this problem, a region near the plate is separated to guarantee the mesh quality at location of interest which is the innovation of the present paper. All computations at least cover a period during which the plate translates 6 times its length. The simulated instantaneous velocity profiles, flow structures and drag coefficients under several Reynolds numbers (20 ≤ Re ≤ 126) and accelerations (20 m/s2≤ a ≤ 152 m/s2) are presented and compared with existing results in literatures. Comparisons are found to be satisfactory, confirming the validity of the current proposed method(region separated DM). The proposed DM method is firstly used to study the transient flow generated from a started flat plate and can be used in further study of transient characteristics during transient operations of turbo machineries.
基金Project supported by the Fondo Sectorial de Investigación para la Educación from the Secretar a de Educación Pública-Consejo Nacional de Ciencia y Tecnología(No.CB-2013/220900)the Secretaría de Investigación y Posgrado from Instituto Politécnico Nacional of Mexico(No.20171181)
文摘The pulsatile electroosmotic flow (PEOF) of a Maxwell fluid in a parallel flat plate microchannel with asymmetric wall zeta potentials is theoretically analyzed. By combining the linear Maxwell viscoelastic model, the Cauchy equation, and the electric field solution obtained from the linearized PoissomBoltzmann equation, a hyperbolic par- tial differential equation is obtained to derive the flow field. The PEOF is controlled by the angular Reynolds number, the ratio of the zeta potentials of the microchannel walls, the electrokinetic parameter, and the elasticity number. The main results obtained from this analysis show strong oscillations in the velocity profiles when the values of the elas- ticity number and the angular Reynolds number increase due to the competition among the elastic, viscous, inertial, and electric forces in the flow.
文摘In this paper, using the integration method, it is sought to solve the problem for the laminar boundary_layer on a flat plate. At first, a trial function of the velocity profile which satisfies the basical boundary conditions is selected. The coefficients in the trial function awaiting decision are decided by using some numerical results of the boundary_layer differential equations. It is similar to the method proposed by Peng Yichuan, but the former is simpler. According to the method proposed by Peng, when the awaiting decision coefficients of the trial function are decided, it is sought to solve a third power algebraic equation. On the other hand, in this paper, there is only need for solving a linear algebraic equation. Moreover, the accuracy of the results of this paper is higher than that of Peng.
文摘On the basis of hypothesis of replacement and the vector formula of Newton’s law for a viscous fluid the way of a finding of resistance a slow flow by an incompressible fluid of bodies of the various form is represented. Application of an offered way to calculation of a flow of various bodies is shown: a sphere, a cylinder, a oblong ellipsoid, a flat plate. Comparison with results of other authors is given.