The flat-plate solar collector is an important component in solar-thermal systems,and its heat transfer optimization is of great significance in terms of the efficiency of energy utilization.However,most existing flat...The flat-plate solar collector is an important component in solar-thermal systems,and its heat transfer optimization is of great significance in terms of the efficiency of energy utilization.However,most existing flat-plate collectors adopt metallic absorber plates with uniform thickness,which often works against energy conservation.In this paper,to achieve the optimal heat transfer performance,we optimized the thickness distribution of the absorber with the constraint of fixed total material volume employing entransy theory.We first established the correspondence between the collector efficiency and the loss of entransy,and then proposed the constrained extreme-value problem and deduced the optimization criterion,namely a uniform temperature gradient,employing a variational method.Finally,on the basis of the optimization criterion,we carried out numerical simulations,with the results showing remarkable optimization effects.When irradiation,the ambient temperature and the wind speed are 800 W/m2,300 K and 3 m/s,respectively,the collector efficiency is enhanced by 8.8% through optimization,which is equivalent to a copper saving of 30%.We also applied the thickness distribution optimized for wind speed of 3 m/s in heat transfer analysis with different wind speed conditions,and the collector efficiency was remarkably better than that for an absorber with uniform thickness.展开更多
In order to increase the efficiency of solar air collectors,a new variant with a protrusion is proposed in this study,and its performances are analyzed from two points of view,namely,in terms of optics and thermodynam...In order to increase the efficiency of solar air collectors,a new variant with a protrusion is proposed in this study,and its performances are analyzed from two points of view,namely,in terms of optics and thermodynamics aspects.By comparing and analyzing the light paths of the protrusion and the dimple,it can be concluded that when sunlight shines on the dimple,it is reflected and absorbed multiple times,whereas for the sunlight shining on the protrusion,there is no secondary reflection or absorption of light.When the lighting area and the properties of the surfaces are the same,the absorption rate of the dimple is 10.3 percentage points higher than that of the protrusion.In the range of Reynolds number from 3000 to 11000,numerical simulations about the effects of the relative height(e/Dh=0.033–0.1)and relative spacing(p/e=4.5–8.5)of protrusions on air heat transfer and flow resistance show that,in terms of comprehensive evaluation coefficient(PF),the best relative height is 0.085,when the relative spacing is 5.A correlation of Nu and f with Re,e/Dh and p/e is obtained by linear regression of the results,in order to provide a useful reference for the design and optimization of this kind of solar air collector.展开更多
Parabolic trough solar collectors(PTCs)are among the most cost-efficient solar thermal technologies.They have several applications,such as feed heaters,boilers,steam generators,and electricity generators.A PTC is a co...Parabolic trough solar collectors(PTCs)are among the most cost-efficient solar thermal technologies.They have several applications,such as feed heaters,boilers,steam generators,and electricity generators.A PTC is a concentrated solar power system that uses parabolic reflectors to focus sunlight onto a tube filled with heattransfer fluid.PTCs performance can be investigated using optical and thermal mathematical models.These models calculate the amount of energy entering the receiver,the amount of usable collected energy,and the amount of heat loss due to convection and radiation.There are several methods and configurations that have been developed so far;however,it is usually difficult for a designer to choose the appropriate method or configuration for his application.The present work investigates different PTC configurations and methods of solution,compares their efficiency and accuracy,summarizes their key behaviors and trends,and improves the available methods by maximizing the positives and minimizing the negatives among them.We investigated three methods and seven configurations.The findings suggest that optimizing the collector structure,tracking system,and reflector can lead to high PTC performance and reduced capital costs.After investigating and comparing the recent mathematical models,the study identified a clear deficiency in estimating the output temperature.Three PTC’s solution methods are investigated,and a novel method is developed to give more accurate estimations of the output temperature.展开更多
A parabolic trough solar collector(PTSC)converts solar radiation into thermal energy.However,low thermal efficiency of PTSC poses a hindrance to the deployment of solar thermal power plants.Thermal performance of PTSC...A parabolic trough solar collector(PTSC)converts solar radiation into thermal energy.However,low thermal efficiency of PTSC poses a hindrance to the deployment of solar thermal power plants.Thermal performance of PTSC is enhanced in this study by incorporating magnetic nanoparticles into the working fluid.The circular receiver pipe,with dimensions of 66 mm diameter,2 mm thickness,and 24 m length,is exposed to uniform temperature and velocity conditions.The working fluid,Therminol-66,is supplemented with Fe3O4 magnetic nanoparticles at concentrations ranging from 1%to 4%.The findings demonstrate that the inclusion of nanoparticles increases the convective heat transfer coefficient(HTC)of the PTSC,with higher nanoparticle volume fractions leading to greater heat transfer but increased pressure drop.The thermal enhancement factor(TEF)of the PTSC is positively affected by the volume fraction of nanoparticles,both with and without a magnetic field.Notably,the scenario with a 4%nanoparticle volume fraction and a magnetic field strength of 250 G exhibits the highest TEF,indicating superior thermal performance.These findings offer potential avenues for improving the efficiency of PTSCs in solar thermal plants by introducing magnetic nanoparticles into the working fluid.展开更多
The experimental study of natural convection in allglass evacuated tube solar collectors is performed through the experimental platform of the solar-assisted fuel cell system.The experimental facility includes solar c...The experimental study of natural convection in allglass evacuated tube solar collectors is performed through the experimental platform of the solar-assisted fuel cell system.The experimental facility includes solar collectors with different length and diameter tubes, different coating materials, and with / without guide plates, respectively. Threedimensional mathematical models on natural and forced convections in the solar collectors are established and the experimental data is validated by field synergy and entransy principles. The results of natural convection show that the water temperature increases and thermal efficiency decreases gradually with the evacuated tube length. The thermal efficiency increases when absorption rates increase from 0. 95 to 1. 0 and emission rates decrease from 0. 16 to 0. 06. The thermal efficiency of solar collectors is increased after being equipped with the guide plate, which is attributed to the disappearance of the mixed flowand the enhancement of the heat transfer at the bottom of the evacuated tube. The results of forced convertion indicate that the Reynolds, Nusselt and entransy increments of the horizontal double collectors are higher than those of the vertical single collector while the entransy dissipation is lower than that of the vertical single collector. It is concluded that the solar collectors with guide plates are suitable for natural convection while the double horizontal collectors are suitable for forced convection in the thermal field of solar-assisted fuel cell systems with lowand medium temperatures.展开更多
This paper presents an experimental analysis for comparisons of conventional flat plate solar collectors and collectors integrated with different numbers of baffles. Heat transfer between absorber plate and drying flu...This paper presents an experimental analysis for comparisons of conventional flat plate solar collectors and collectors integrated with different numbers of baffles. Heat transfer between absorber plate and drying fluid (air) has been one of the major challenges in the design and operations of the indirect solar dryer systems. In this experiment, efficiency of air flat plate solar collector integrated with 2, 3, 4 and 8 baffles was studied and compared with the ordinary collector. The results showed that integrating solar collector with baffles significantly increased the efficiency of the system. It was noted that collector with 2, 3, 4 and 8 baffles had a mean efficiency of 29.2%, 31.3%, 33.1% and 33.7% respectively while with no baffles was 28.9%. The analysis showed that when there were less than four baffles in the collector, heat transfer was dominant over pressure drop and hence high efficiency. However, when the number of baffles exceeded four, the effect associated with an increase in pressure drop highly observed compared to heat transfer coefficient, thus resulted to insignificant increase in efficiency. Therefore, the optimum number of four baffles was commended for the designed model for optimum efficiency.展开更多
To research solar energy's efficiency and environmental benefits,the thermal efficiency,exergy,and entropy of solar collectors were calculated.The experiment involved two glass-topped collectors,fluid transfer tub...To research solar energy's efficiency and environmental benefits,the thermal efficiency,exergy,and entropy of solar collectors were calculated.The experiment involved two glass-topped collectors,fluid transfer tubes,and aluminum heat-absorbing plates.Glass wool insulation minimized heat loss.A 0.5% TiO_(2)/Water nanofluid was created using a mechanical and ultrasonic stirrer.Results showed that solar radiation increased thermal efficiency until midday,reaching 48.48% for water and 51.23% for the nanofluid.With increasing mass flow rates from 0.0045 kg/s to 0.02 kg/s,thermal efficiency improved from 16.26% to 47.37% for water and from 20.65% to 48.76% for the nanofluid.Filtered water provided 380 W and 395 W of energy in March and April,while the nanofluid increased it to 395 W and 415 W during these months.Mass flow generated energy,and the Reynolds number raised entropy.The noon exergy efficiency for nanofluids was 50%-55%,compared to 30% for water.At noon,the broken exergy measured 877.53 W for the nanofluid and 880.12 W for water.In Kirkuk,Iraq,the 0.5% TiO_(2)/Water nanofluid outperformed water in solar collectors.展开更多
This study conducts both numerical and empirical assessments of thermal transfer and fluid flow characteristics in a Solar Air Collector(SAC)using a Delta Wing Vortex Generator(DWVG),and the effects of different heigh...This study conducts both numerical and empirical assessments of thermal transfer and fluid flow characteristics in a Solar Air Collector(SAC)using a Delta Wing Vortex Generator(DWVG),and the effects of different height ratios(Rh=0.6,0.8,1,1.2 and 1.4)in delta wing vortex generators,which were not considered in the earlier studies,are investigated.Energy and exergy analyses are performed to gain maximum efficiency.The Reynolds number based on the outlet velocity and hydraulic diameter falls between 4400 and 22000,corresponding to the volume flow rate of 5.21–26.07 m^(3)/h.It is observed that the delta wing vortex generators with a higher height ratio yield maximum heat transfer enhancement and overall enhancement ratio.The empirical and numerical findings demonstrate that the exergy and thermal efficiencies decline in a specific range.TheNusselt number,pressure drop,energy,and exergy efficiencies enhance with rising Reynolds number,although the friction coefficient diminishes.The maximum heat transfer enhancement is 57%.According to the evaluation of exergy efficiency,the greatest efficiency of 31.2%is obtained at Rh=1.4 and Reynolds number 22000.展开更多
An energy production system consisting of a solar collector, biogas dry reforming reactor and solid oxide fuel cell (SOFC) was assumed to be installed in Kolkata, India. This study aims to understand the impact of cli...An energy production system consisting of a solar collector, biogas dry reforming reactor and solid oxide fuel cell (SOFC) was assumed to be installed in Kolkata, India. This study aims to understand the impact of climate conditions on the performance of solar collectors with different lengths of parabolic trough solar collector (dx) and mass flow rate of heat transfer fluid (m). In addition, this study has evaluated the amount of H2 produced by biogas dry reforming (GH2), the amount of power generated by SOFC (PSOFC) and the maximum number of possible households (N) whose electricity demand could be met by the energy system proposed, considering the performance of solar collector with the different dx and m. As a result, the optimum dx was found to be 4 m. This study revealed that the temperature of heat transfer fluid (Tfb) decreased with the increase in m. Tfb in March, April and May was higher than that in other months, while Tfb from June to December was the lowest. GH2, PSOFC and N in March, April and May were higher than those in other months, irrespective of m. The optimum m was 0.030 kg/s.展开更多
The integration of building with solar collector was studied. The theoretical model of integration of building envelopes and flat plate solar collectors was set up and the thermal performance of integration was studie...The integration of building with solar collector was studied. The theoretical model of integration of building envelopes and flat plate solar collectors was set up and the thermal performance of integration was studied in winter and summer,and compared to envelopes without solar collectors. The results show that the solar collection efficiency is raised in the integration of building envelopes and solar collectors with the air layer doors closed. This is true whether in winter or summer. The increment is higher as the inlet water temperature increases or the ambient temperature is low. In winter,the heat loss is significantly reduced through integration of the building envelopes and solar collectors with the closed air layer doors. The integration with the open air layer door is worse than that without collectors. In summer,the heat gains of the integration of envelopes and solar collectors are more obviously reduced than envelopes without collectors,the integration with the open air layer door is a little better than the closed one,but the difference is very small.展开更多
To this day, only two types of solar power plants have been proposed and built: high temperature thermal solar one and photovoltaic one. It is here proposed a new type of solar thermal plant using glass-top flat surfa...To this day, only two types of solar power plants have been proposed and built: high temperature thermal solar one and photovoltaic one. It is here proposed a new type of solar thermal plant using glass-top flat surface solar collectors, so working at low temperature (i.e., below 100°C). This power plant is aimed at warm countries, i.e., the ones mainly located between -40° and 40° latitude, having available space along their coast. This land based plant, to install on the seashore, is technologically similar to the one used for OTEC (Ocean Thermal Energy Conversion). This plant, apart from supplying electricity with a much better thermodynamic efficiency than OTEC plants, has the main advantage of providing desalinated water for drinking and irrigation. This plant is designed to generate electricity (and desalinated water) night and day and all year round, by means of hot water storage, with just a variation of the power delivered depending on the season.展开更多
Solar collectors can provide clean, renewable, and domestic energy. The tilt angle and horizontal direction of solar collectors significantly affect its efficiency. There are many good methods to search the optimum ti...Solar collectors can provide clean, renewable, and domestic energy. The tilt angle and horizontal direction of solar collectors significantly affect its efficiency. There are many good methods to search the optimum tilt angle and horizontal direction to realize the maximum total radiation on the solar collector within a particular day or a specific period. However, it is hard to realize it when solar collectors are placed under obstacle’s shadows;especially when some obstacles, such as trees, have irregular shapes. This paper presents algorithms to achieve the best tilt angle and horizontal direction for solar collector’s performance under the free-form surfaces 3D obstacle’s shadow. The solution process is composed of 4 steps. First, it creates a 3D scene, in which a unique color is given to the solar collector. Second, it employs orthographic projection from the point of view to get an image of the scene. Third, the number of pixels is used to represent the efficiency of the solar collector by counting the pixels of the unique color. Fourth, the efficiency of solar collector in each direction in a period of time is calculated with many images to further select the best direction.展开更多
China has abundant solar energy resource. Solar thermal collectors, particularly all-glass evacuated tubular collectors, have been studied and developed for 30 years, and solar thermal industry has developed rapidly f...China has abundant solar energy resource. Solar thermal collectors, particularly all-glass evacuated tubular collectors, have been studied and developed for 30 years, and solar thermal industry has developed rapidly for 15 years. There are various solar thermal systems, with an operation area of around 108 million m2 in 2007. These systems mainly provide domestic hot water, but some other applications are under extensive study and development as well.展开更多
In this work,a life cycle analysis is accomplished for flat plate solar collectors.The purpose of this investigation is to predict the energy consumption during the manufacturing processes that results in carbon dioxi...In this work,a life cycle analysis is accomplished for flat plate solar collectors.The purpose of this investigation is to predict the energy consumption during the manufacturing processes that results in carbon dioxide emissions.Energy consumption and system efficiency enhancement will be studied and predicted.CES EduPack software is used to perform the analysis of the currently commercial system,and the suggested changes are implemented to increase the efficiency and make the comparison.Even though cost analysis is done,the priority of selection is given to the most energy conserving and environmentally friendly alternative.However,if the compared alternatives result in the same energy consumption and CO_(2)emissions,the cost analysis would be a better approach.It can be stated that flat plate solar collectors are sustainable and renewable energy systems that do not produce CO_(2)emissions during their active usage,but the manufacturing processes they undergo during the design contribute to the greenhouse gasses emission.展开更多
This paper shows the modeling of a solar collective heating system in order to predict the system performances. Two systems are proposed: 1) the first, Solar Direct Hot Water, which is composed of flat plate collector...This paper shows the modeling of a solar collective heating system in order to predict the system performances. Two systems are proposed: 1) the first, Solar Direct Hot Water, which is composed of flat plate collectors and thermal storage tank, 2) the second, a Solar Indirect Hot Water in which we added an external heat exchanger of constant effectiveness to the first system. The mass flow rate by a collector is fixed to 0.04 Kg·s–1 and the total number of collectors is adjusted to 60. For the first system, the maximum average water temperature within the tank in a typical day in summer and annual performances are calculated by varying the number of collectors connected in series. For the second, this paper shows the detailed analysis of water temperature within the storage and annual performances by varying the mass flow rate on the cold side of the heat exchanger and the number of collectors in series on the hot side. It is shown that the stratification within the storage is strongly influenced by mass flow rate and the connections between collectors. It is also demonstrated that the number of collectors that can be connected in series is limited. The optimization of the mass flow rate on cold side of the heat exchanger is seen to be an important factor for the energy saving.展开更多
Luminescent solar concentrators (LSCs) with styrene (ST) and methylmethacrylate (MMA) of different percentage as the matrix were prepared by a casting method using ponceau 2R. DSC has been used to compare the thermal ...Luminescent solar concentrators (LSCs) with styrene (ST) and methylmethacrylate (MMA) of different percentage as the matrix were prepared by a casting method using ponceau 2R. DSC has been used to compare the thermal stability of the different LSCs. FTIR spectroscopy shows that appearance of -N=N- for ponceau 2R in all ST/MMA matrixes indicating that the highest stability of this kind of dye in these matrixes. The values of the optical band gap (Eg) have been obtained from direct allowed transition before and after the samples have been exposed to sunlight for 9 weeks. Photodegradation studies revealed that the more photostable dye doped in PMMA matrix than in other matrixes. The results showed that the homo PMMA/ponceau 2R system has the highest fluorescence quantum yield (Qf). Therefore this sample can be selected for field performance of fluorescent solar collectors. The photovoltaic cell coupled with homo PMMA/2R LSC shows a maximum efficiency, 2% compared to the normal one.展开更多
A variety of liquid thermal solar collectors designs used for water heating have been developed by the previous researchers. But the majority of them do not meet the requirements on small weight, easy assembling and i...A variety of liquid thermal solar collectors designs used for water heating have been developed by the previous researchers. But the majority of them do not meet the requirements on small weight, easy assembling and installing, versatility, scalability and adaptability of the design, which are particularly important when they are facade integrated. In order to avoid the above mentioned drawbacks of the liquid thermal collectors, the authors propose to apply to them extruded aluminum alloy made heat pipes of originally designed cross-sectional profile with wide fins and longitudinal grooves. Such solar collectors could be a good solution for building facade and roof integration, because they are assembled of several standard and independent, hermetically sealed and light-weight modules, easy mounted and "dry" connected to the main pipeline. At that, their thermal performances are not worse than of the other known ones made of heavier and more expensive copper with higher thermal conductance, or having entire rigid designs. Some variants of the developed solar collectors shaping of the assembled modules for building facade or roof integration are proposed. Variously colored coatings to the absorbers are developed and made of carbon-siliceous nano-composites by means of sol-gel method. Their optical performances were compared with "anodized black". It is stated that colored coatings have a good prospect in thermal SCs (solar collectors) adaptation to building facades decoration, but the works on study and upgrade of their performances should be continued.展开更多
A simple idea to obtain a desired color that hiding the black color, and the visibility of tubes and corrugations of the metal sheet (absorber) of the thermal solar collectors which is consider the main obstacle to ...A simple idea to obtain a desired color that hiding the black color, and the visibility of tubes and corrugations of the metal sheet (absorber) of the thermal solar collectors which is consider the main obstacle to facade integration buildings of solar thermal collectors will be presented in this study by designing a multilayer optical interference filter during RF magnetron sputtering process. This filter work as antireflection coating in the near IR region and also includes a high colored reflectance at a specific wavelength in the visible region, this is to gain an esthetic aspect for the thermal solar collector which can be used as building facades by employing appropriate dielectric materials with high refractive index (H) like SiO2 and low refractive index (L) such as MgF2 which they deposited on glass substrate for quarterwave thickness and for the optical model air//HL//glass.展开更多
The operating efficiency of evacuated tubes themselves under varying environmental conditions and installation scenarios,independent of water and space heating auxiliary equipment,are not readily available values.Furt...The operating efficiency of evacuated tubes themselves under varying environmental conditions and installation scenarios,independent of water and space heating auxiliary equipment,are not readily available values.Further,Manitoba specific data has not been established.The purpose of this research program was to measure the efficiency of evacuated tube solar collectors under various operating conditions including:the angle of inclination towards the incident solar radiation,heat transfer fluid flow rate,glazing installation,and number of evacuated tubes.The operating conditions and configurations were chosen to represent realistic or probable installation scenarios and environmental conditions.Furthermore,the research aimed to identify the suitability of evacuated tube solar collectors to each of the scenarios.These design values are of use for appropriate sizing of water or space heating systems,system configuration and optimization,and calculation of return on investment.The scope of the research project was limited to the efficiency of various configurations of a 32-tube panel,not the entire solar domestic hot water or space heating system.Thus,factors such as heat loss in the tubing,solar storage tank,and heat exchanger efficiency were not investigated.The findings indicated that efficiency varied by approximately 5%between the different collector configurations,as observed from the overlay graph of results.When the efficiency of a collector is considered within a system it is proposed that effectiveness may be a better measure of overall performance.展开更多
In order to reduce the increasing energy consumption for the domestic demands of existing single-family housing and take advantage of frequent building enlargements,this paper presents a methodology and supporting sof...In order to reduce the increasing energy consumption for the domestic demands of existing single-family housing and take advantage of frequent building enlargements,this paper presents a methodology and supporting software tool for determining the optimal design configuration of an attic with integrated solar collectors.The analysis procedure is based on parametric modeling,energy simulation and the use of evolutionary algorithms for finding optimal designs.It has been implemented as a Web-platform for public use that provides users with a proposal of an attic shape with maximum solar energy collection,maximum living space and minimum construc-tion envelope for each house according its size and orientation.The attic integrates PV,thermal and hybrid solar panels on one side of the roof.This paper describes the methodology and software design,asssment of the Web-platform usage and case-studies to verify its behavior.In a matter of minutes,the Web-platform enables users to select a specific attic design for each house that has integrated solar collectors that can produce energy to cover almost 100%of domestic energy consumption.The attics designed provide a nearly 30%increase in living space through the extension of one to four rooms,and the construction cost of the envelope is similar to that of a standard housing extension.展开更多
基金supported by the National Natural Science Foundation of China (51006060)
文摘The flat-plate solar collector is an important component in solar-thermal systems,and its heat transfer optimization is of great significance in terms of the efficiency of energy utilization.However,most existing flat-plate collectors adopt metallic absorber plates with uniform thickness,which often works against energy conservation.In this paper,to achieve the optimal heat transfer performance,we optimized the thickness distribution of the absorber with the constraint of fixed total material volume employing entransy theory.We first established the correspondence between the collector efficiency and the loss of entransy,and then proposed the constrained extreme-value problem and deduced the optimization criterion,namely a uniform temperature gradient,employing a variational method.Finally,on the basis of the optimization criterion,we carried out numerical simulations,with the results showing remarkable optimization effects.When irradiation,the ambient temperature and the wind speed are 800 W/m2,300 K and 3 m/s,respectively,the collector efficiency is enhanced by 8.8% through optimization,which is equivalent to a copper saving of 30%.We also applied the thickness distribution optimized for wind speed of 3 m/s in heat transfer analysis with different wind speed conditions,and the collector efficiency was remarkably better than that for an absorber with uniform thickness.
基金the Key Scientific Research Projects of Colleges and Universities in Henan Province(22B480007).
文摘In order to increase the efficiency of solar air collectors,a new variant with a protrusion is proposed in this study,and its performances are analyzed from two points of view,namely,in terms of optics and thermodynamics aspects.By comparing and analyzing the light paths of the protrusion and the dimple,it can be concluded that when sunlight shines on the dimple,it is reflected and absorbed multiple times,whereas for the sunlight shining on the protrusion,there is no secondary reflection or absorption of light.When the lighting area and the properties of the surfaces are the same,the absorption rate of the dimple is 10.3 percentage points higher than that of the protrusion.In the range of Reynolds number from 3000 to 11000,numerical simulations about the effects of the relative height(e/Dh=0.033–0.1)and relative spacing(p/e=4.5–8.5)of protrusions on air heat transfer and flow resistance show that,in terms of comprehensive evaluation coefficient(PF),the best relative height is 0.085,when the relative spacing is 5.A correlation of Nu and f with Re,e/Dh and p/e is obtained by linear regression of the results,in order to provide a useful reference for the design and optimization of this kind of solar air collector.
文摘Parabolic trough solar collectors(PTCs)are among the most cost-efficient solar thermal technologies.They have several applications,such as feed heaters,boilers,steam generators,and electricity generators.A PTC is a concentrated solar power system that uses parabolic reflectors to focus sunlight onto a tube filled with heattransfer fluid.PTCs performance can be investigated using optical and thermal mathematical models.These models calculate the amount of energy entering the receiver,the amount of usable collected energy,and the amount of heat loss due to convection and radiation.There are several methods and configurations that have been developed so far;however,it is usually difficult for a designer to choose the appropriate method or configuration for his application.The present work investigates different PTC configurations and methods of solution,compares their efficiency and accuracy,summarizes their key behaviors and trends,and improves the available methods by maximizing the positives and minimizing the negatives among them.We investigated three methods and seven configurations.The findings suggest that optimizing the collector structure,tracking system,and reflector can lead to high PTC performance and reduced capital costs.After investigating and comparing the recent mathematical models,the study identified a clear deficiency in estimating the output temperature.Three PTC’s solution methods are investigated,and a novel method is developed to give more accurate estimations of the output temperature.
文摘A parabolic trough solar collector(PTSC)converts solar radiation into thermal energy.However,low thermal efficiency of PTSC poses a hindrance to the deployment of solar thermal power plants.Thermal performance of PTSC is enhanced in this study by incorporating magnetic nanoparticles into the working fluid.The circular receiver pipe,with dimensions of 66 mm diameter,2 mm thickness,and 24 m length,is exposed to uniform temperature and velocity conditions.The working fluid,Therminol-66,is supplemented with Fe3O4 magnetic nanoparticles at concentrations ranging from 1%to 4%.The findings demonstrate that the inclusion of nanoparticles increases the convective heat transfer coefficient(HTC)of the PTSC,with higher nanoparticle volume fractions leading to greater heat transfer but increased pressure drop.The thermal enhancement factor(TEF)of the PTSC is positively affected by the volume fraction of nanoparticles,both with and without a magnetic field.Notably,the scenario with a 4%nanoparticle volume fraction and a magnetic field strength of 250 G exhibits the highest TEF,indicating superior thermal performance.These findings offer potential avenues for improving the efficiency of PTSCs in solar thermal plants by introducing magnetic nanoparticles into the working fluid.
基金The National Natural Science Foundation of China(No.51376110,51541604)the Major International(Regional) Joint Research Project of the National Natural Science Foundation of China(No.61320106011)
文摘The experimental study of natural convection in allglass evacuated tube solar collectors is performed through the experimental platform of the solar-assisted fuel cell system.The experimental facility includes solar collectors with different length and diameter tubes, different coating materials, and with / without guide plates, respectively. Threedimensional mathematical models on natural and forced convections in the solar collectors are established and the experimental data is validated by field synergy and entransy principles. The results of natural convection show that the water temperature increases and thermal efficiency decreases gradually with the evacuated tube length. The thermal efficiency increases when absorption rates increase from 0. 95 to 1. 0 and emission rates decrease from 0. 16 to 0. 06. The thermal efficiency of solar collectors is increased after being equipped with the guide plate, which is attributed to the disappearance of the mixed flowand the enhancement of the heat transfer at the bottom of the evacuated tube. The results of forced convertion indicate that the Reynolds, Nusselt and entransy increments of the horizontal double collectors are higher than those of the vertical single collector while the entransy dissipation is lower than that of the vertical single collector. It is concluded that the solar collectors with guide plates are suitable for natural convection while the double horizontal collectors are suitable for forced convection in the thermal field of solar-assisted fuel cell systems with lowand medium temperatures.
文摘This paper presents an experimental analysis for comparisons of conventional flat plate solar collectors and collectors integrated with different numbers of baffles. Heat transfer between absorber plate and drying fluid (air) has been one of the major challenges in the design and operations of the indirect solar dryer systems. In this experiment, efficiency of air flat plate solar collector integrated with 2, 3, 4 and 8 baffles was studied and compared with the ordinary collector. The results showed that integrating solar collector with baffles significantly increased the efficiency of the system. It was noted that collector with 2, 3, 4 and 8 baffles had a mean efficiency of 29.2%, 31.3%, 33.1% and 33.7% respectively while with no baffles was 28.9%. The analysis showed that when there were less than four baffles in the collector, heat transfer was dominant over pressure drop and hence high efficiency. However, when the number of baffles exceeded four, the effect associated with an increase in pressure drop highly observed compared to heat transfer coefficient, thus resulted to insignificant increase in efficiency. Therefore, the optimum number of four baffles was commended for the designed model for optimum efficiency.
文摘To research solar energy's efficiency and environmental benefits,the thermal efficiency,exergy,and entropy of solar collectors were calculated.The experiment involved two glass-topped collectors,fluid transfer tubes,and aluminum heat-absorbing plates.Glass wool insulation minimized heat loss.A 0.5% TiO_(2)/Water nanofluid was created using a mechanical and ultrasonic stirrer.Results showed that solar radiation increased thermal efficiency until midday,reaching 48.48% for water and 51.23% for the nanofluid.With increasing mass flow rates from 0.0045 kg/s to 0.02 kg/s,thermal efficiency improved from 16.26% to 47.37% for water and from 20.65% to 48.76% for the nanofluid.Filtered water provided 380 W and 395 W of energy in March and April,while the nanofluid increased it to 395 W and 415 W during these months.Mass flow generated energy,and the Reynolds number raised entropy.The noon exergy efficiency for nanofluids was 50%-55%,compared to 30% for water.At noon,the broken exergy measured 877.53 W for the nanofluid and 880.12 W for water.In Kirkuk,Iraq,the 0.5% TiO_(2)/Water nanofluid outperformed water in solar collectors.
文摘This study conducts both numerical and empirical assessments of thermal transfer and fluid flow characteristics in a Solar Air Collector(SAC)using a Delta Wing Vortex Generator(DWVG),and the effects of different height ratios(Rh=0.6,0.8,1,1.2 and 1.4)in delta wing vortex generators,which were not considered in the earlier studies,are investigated.Energy and exergy analyses are performed to gain maximum efficiency.The Reynolds number based on the outlet velocity and hydraulic diameter falls between 4400 and 22000,corresponding to the volume flow rate of 5.21–26.07 m^(3)/h.It is observed that the delta wing vortex generators with a higher height ratio yield maximum heat transfer enhancement and overall enhancement ratio.The empirical and numerical findings demonstrate that the exergy and thermal efficiencies decline in a specific range.TheNusselt number,pressure drop,energy,and exergy efficiencies enhance with rising Reynolds number,although the friction coefficient diminishes.The maximum heat transfer enhancement is 57%.According to the evaluation of exergy efficiency,the greatest efficiency of 31.2%is obtained at Rh=1.4 and Reynolds number 22000.
文摘An energy production system consisting of a solar collector, biogas dry reforming reactor and solid oxide fuel cell (SOFC) was assumed to be installed in Kolkata, India. This study aims to understand the impact of climate conditions on the performance of solar collectors with different lengths of parabolic trough solar collector (dx) and mass flow rate of heat transfer fluid (m). In addition, this study has evaluated the amount of H2 produced by biogas dry reforming (GH2), the amount of power generated by SOFC (PSOFC) and the maximum number of possible households (N) whose electricity demand could be met by the energy system proposed, considering the performance of solar collector with the different dx and m. As a result, the optimum dx was found to be 4 m. This study revealed that the temperature of heat transfer fluid (Tfb) decreased with the increase in m. Tfb in March, April and May was higher than that in other months, while Tfb from June to December was the lowest. GH2, PSOFC and N in March, April and May were higher than those in other months, irrespective of m. The optimum m was 0.030 kg/s.
基金Project(2006BAJ01A12-10-03) supported by the National Natural Science Foundation of ChinaProject(J50502) supported by the Leading Discipline of Shanghai Education Commission,China
文摘The integration of building with solar collector was studied. The theoretical model of integration of building envelopes and flat plate solar collectors was set up and the thermal performance of integration was studied in winter and summer,and compared to envelopes without solar collectors. The results show that the solar collection efficiency is raised in the integration of building envelopes and solar collectors with the air layer doors closed. This is true whether in winter or summer. The increment is higher as the inlet water temperature increases or the ambient temperature is low. In winter,the heat loss is significantly reduced through integration of the building envelopes and solar collectors with the closed air layer doors. The integration with the open air layer door is worse than that without collectors. In summer,the heat gains of the integration of envelopes and solar collectors are more obviously reduced than envelopes without collectors,the integration with the open air layer door is a little better than the closed one,but the difference is very small.
文摘To this day, only two types of solar power plants have been proposed and built: high temperature thermal solar one and photovoltaic one. It is here proposed a new type of solar thermal plant using glass-top flat surface solar collectors, so working at low temperature (i.e., below 100°C). This power plant is aimed at warm countries, i.e., the ones mainly located between -40° and 40° latitude, having available space along their coast. This land based plant, to install on the seashore, is technologically similar to the one used for OTEC (Ocean Thermal Energy Conversion). This plant, apart from supplying electricity with a much better thermodynamic efficiency than OTEC plants, has the main advantage of providing desalinated water for drinking and irrigation. This plant is designed to generate electricity (and desalinated water) night and day and all year round, by means of hot water storage, with just a variation of the power delivered depending on the season.
文摘Solar collectors can provide clean, renewable, and domestic energy. The tilt angle and horizontal direction of solar collectors significantly affect its efficiency. There are many good methods to search the optimum tilt angle and horizontal direction to realize the maximum total radiation on the solar collector within a particular day or a specific period. However, it is hard to realize it when solar collectors are placed under obstacle’s shadows;especially when some obstacles, such as trees, have irregular shapes. This paper presents algorithms to achieve the best tilt angle and horizontal direction for solar collector’s performance under the free-form surfaces 3D obstacle’s shadow. The solution process is composed of 4 steps. First, it creates a 3D scene, in which a unique color is given to the solar collector. Second, it employs orthographic projection from the point of view to get an image of the scene. Third, the number of pixels is used to represent the efficiency of the solar collector by counting the pixels of the unique color. Fourth, the efficiency of solar collector in each direction in a period of time is calculated with many images to further select the best direction.
文摘China has abundant solar energy resource. Solar thermal collectors, particularly all-glass evacuated tubular collectors, have been studied and developed for 30 years, and solar thermal industry has developed rapidly for 15 years. There are various solar thermal systems, with an operation area of around 108 million m2 in 2007. These systems mainly provide domestic hot water, but some other applications are under extensive study and development as well.
文摘In this work,a life cycle analysis is accomplished for flat plate solar collectors.The purpose of this investigation is to predict the energy consumption during the manufacturing processes that results in carbon dioxide emissions.Energy consumption and system efficiency enhancement will be studied and predicted.CES EduPack software is used to perform the analysis of the currently commercial system,and the suggested changes are implemented to increase the efficiency and make the comparison.Even though cost analysis is done,the priority of selection is given to the most energy conserving and environmentally friendly alternative.However,if the compared alternatives result in the same energy consumption and CO_(2)emissions,the cost analysis would be a better approach.It can be stated that flat plate solar collectors are sustainable and renewable energy systems that do not produce CO_(2)emissions during their active usage,but the manufacturing processes they undergo during the design contribute to the greenhouse gasses emission.
文摘This paper shows the modeling of a solar collective heating system in order to predict the system performances. Two systems are proposed: 1) the first, Solar Direct Hot Water, which is composed of flat plate collectors and thermal storage tank, 2) the second, a Solar Indirect Hot Water in which we added an external heat exchanger of constant effectiveness to the first system. The mass flow rate by a collector is fixed to 0.04 Kg·s–1 and the total number of collectors is adjusted to 60. For the first system, the maximum average water temperature within the tank in a typical day in summer and annual performances are calculated by varying the number of collectors connected in series. For the second, this paper shows the detailed analysis of water temperature within the storage and annual performances by varying the mass flow rate on the cold side of the heat exchanger and the number of collectors in series on the hot side. It is shown that the stratification within the storage is strongly influenced by mass flow rate and the connections between collectors. It is also demonstrated that the number of collectors that can be connected in series is limited. The optimization of the mass flow rate on cold side of the heat exchanger is seen to be an important factor for the energy saving.
文摘Luminescent solar concentrators (LSCs) with styrene (ST) and methylmethacrylate (MMA) of different percentage as the matrix were prepared by a casting method using ponceau 2R. DSC has been used to compare the thermal stability of the different LSCs. FTIR spectroscopy shows that appearance of -N=N- for ponceau 2R in all ST/MMA matrixes indicating that the highest stability of this kind of dye in these matrixes. The values of the optical band gap (Eg) have been obtained from direct allowed transition before and after the samples have been exposed to sunlight for 9 weeks. Photodegradation studies revealed that the more photostable dye doped in PMMA matrix than in other matrixes. The results showed that the homo PMMA/ponceau 2R system has the highest fluorescence quantum yield (Qf). Therefore this sample can be selected for field performance of fluorescent solar collectors. The photovoltaic cell coupled with homo PMMA/2R LSC shows a maximum efficiency, 2% compared to the normal one.
文摘A variety of liquid thermal solar collectors designs used for water heating have been developed by the previous researchers. But the majority of them do not meet the requirements on small weight, easy assembling and installing, versatility, scalability and adaptability of the design, which are particularly important when they are facade integrated. In order to avoid the above mentioned drawbacks of the liquid thermal collectors, the authors propose to apply to them extruded aluminum alloy made heat pipes of originally designed cross-sectional profile with wide fins and longitudinal grooves. Such solar collectors could be a good solution for building facade and roof integration, because they are assembled of several standard and independent, hermetically sealed and light-weight modules, easy mounted and "dry" connected to the main pipeline. At that, their thermal performances are not worse than of the other known ones made of heavier and more expensive copper with higher thermal conductance, or having entire rigid designs. Some variants of the developed solar collectors shaping of the assembled modules for building facade or roof integration are proposed. Variously colored coatings to the absorbers are developed and made of carbon-siliceous nano-composites by means of sol-gel method. Their optical performances were compared with "anodized black". It is stated that colored coatings have a good prospect in thermal SCs (solar collectors) adaptation to building facades decoration, but the works on study and upgrade of their performances should be continued.
文摘A simple idea to obtain a desired color that hiding the black color, and the visibility of tubes and corrugations of the metal sheet (absorber) of the thermal solar collectors which is consider the main obstacle to facade integration buildings of solar thermal collectors will be presented in this study by designing a multilayer optical interference filter during RF magnetron sputtering process. This filter work as antireflection coating in the near IR region and also includes a high colored reflectance at a specific wavelength in the visible region, this is to gain an esthetic aspect for the thermal solar collector which can be used as building facades by employing appropriate dielectric materials with high refractive index (H) like SiO2 and low refractive index (L) such as MgF2 which they deposited on glass substrate for quarterwave thickness and for the optical model air//HL//glass.
基金financial support,the Biosystems Engineering technicians and Alternative Village team for their assistance.
文摘The operating efficiency of evacuated tubes themselves under varying environmental conditions and installation scenarios,independent of water and space heating auxiliary equipment,are not readily available values.Further,Manitoba specific data has not been established.The purpose of this research program was to measure the efficiency of evacuated tube solar collectors under various operating conditions including:the angle of inclination towards the incident solar radiation,heat transfer fluid flow rate,glazing installation,and number of evacuated tubes.The operating conditions and configurations were chosen to represent realistic or probable installation scenarios and environmental conditions.Furthermore,the research aimed to identify the suitability of evacuated tube solar collectors to each of the scenarios.These design values are of use for appropriate sizing of water or space heating systems,system configuration and optimization,and calculation of return on investment.The scope of the research project was limited to the efficiency of various configurations of a 32-tube panel,not the entire solar domestic hot water or space heating system.Thus,factors such as heat loss in the tubing,solar storage tank,and heat exchanger efficiency were not investigated.The findings indicated that efficiency varied by approximately 5%between the different collector configurations,as observed from the overlay graph of results.When the efficiency of a collector is considered within a system it is proposed that effectiveness may be a better measure of overall performance.
基金supported by Project MacroFacultad de Ingeniería 14ENI2—26866 Proyecto CORFO and AKA-Conity ERNC-007the EnerSolar Company of Concepción,Chile,the Tesla Company of Concepción,Chile,and Peter Lund and Pekka Heikkinen of the Aalto University,Helsinki.
文摘In order to reduce the increasing energy consumption for the domestic demands of existing single-family housing and take advantage of frequent building enlargements,this paper presents a methodology and supporting software tool for determining the optimal design configuration of an attic with integrated solar collectors.The analysis procedure is based on parametric modeling,energy simulation and the use of evolutionary algorithms for finding optimal designs.It has been implemented as a Web-platform for public use that provides users with a proposal of an attic shape with maximum solar energy collection,maximum living space and minimum construc-tion envelope for each house according its size and orientation.The attic integrates PV,thermal and hybrid solar panels on one side of the roof.This paper describes the methodology and software design,asssment of the Web-platform usage and case-studies to verify its behavior.In a matter of minutes,the Web-platform enables users to select a specific attic design for each house that has integrated solar collectors that can produce energy to cover almost 100%of domestic energy consumption.The attics designed provide a nearly 30%increase in living space through the extension of one to four rooms,and the construction cost of the envelope is similar to that of a standard housing extension.