Background: In linear accelerators, the treatment field’s uniform intensity is achieved by including a flattening filter in the beam. However, to produce more conformal dose distributions, contemporary radiotherapy p...Background: In linear accelerators, the treatment field’s uniform intensity is achieved by including a flattening filter in the beam. However, to produce more conformal dose distributions, contemporary radiotherapy practice now frequently uses fluence and aperture modifying techniques, such as volumetric modulated arc therapy. In these circumstances, the flattening filter in the beam manufacturing process is no longer required. It is therefore necessary to compare the monitor units of 6 MV and flattening filter free plans and how it influences the gamma pass rates to determine which is best for treating cervical cancer with pelvic lymph node metastasis. Methods: VMAT plans for fifteen patients with cervical cancer with pathological pelvic lymph node metastasis were included in this study. Each patient had two VMAT plans using conventional 6 MV beam with flattening filter and one with flattening filter free beam (FFF). The VMAT plans were made using two arcs, and then recalculated to give the planned dose distribution to the detectors in a Delta4 phantom. The VMAT plans were irradiated on the Delta4 phantom using an Elekta linear accelerator (6 MV). Results: The mean monitor unit for the 6 MV plans was 506.3 MU and a standard deviation of 48.6 while that of the FFF plans had a mean MU of 701.5 with a standard deviation of 87.6. The total monitor units (MUs) for the FFF plans were significantly greater than the 6 MV plans (p = 6.1 × 10<sup>-5</sup>). Conclusion: Flattening filter free (FFF) plans require more numbers of monitor units in comparison to conventional 6 MV filtered beams for external radiation of cervical cancer with pelvic lymph nodes involvement.展开更多
Motive of the study is to present quantitative and qualitative analysis and comparison of beam data measurement with FF (flattening filter) and FFF (flattening filter free) beam in a Varian TrueBeam<sup>TM</s...Motive of the study is to present quantitative and qualitative analysis and comparison of beam data measurement with FF (flattening filter) and FFF (flattening filter free) beam in a Varian TrueBeam<sup>TM</sup> Medical Linear Accelerator. Critique of beam characterization and evolution of dosimetric properties for 6 MV, 10 MV, 15 MV FF beam and 6 MVFFF, 10 MVFFF FFF beam has been carried out. We performed the comparison of photon beam data for two standard FF photon energy 6 MV, 10 MV verses 6 MVFFF, and 10 MVFFF FFF beam. Determination and comparison of parameter involved PDD (Percentage depth dose), Depth dose profile, Symmetry, Flatness, Quality index, Relative output factor, Penumbra, Transmission factor, DLG (Dosimetric leaf gap), in addition to degree of Un-flatness and off-axis ratio of FFF beam. Outcomes of presenting study had shown that change of various parameters such as Percentage depth dose curves, Shape of the depth dose profile, Transmission, Value of quality index and significant rise in surface dose for FFF in comparison with FF beam. Differences in the output factor at lower and higher field sizes for FFF beam compared to that of FF beam were found. The maximum output factor deviation between 6 MV and 6 MVFFF was found to be 4.55%, whereas in 10 MV and 10 MVFFF was 5.71%. Beam quality TPR20/10 for FFF beam was found to be lesser in magnitude, 5.42% for 6 MVFFF whereas 4.50% for 10 MVFFF compared to 6 MV and 10 MV FF beam respectively. Jaw transmission and interleaf leakage for FFF beam were found to be lesser than FF beam. Also DLG for FFF beam was found to be lesser in magnitude comparable to that of flattened beam. This study is mainly inclined towards evaluation and comparison of the FF and FFF beam. It has been observed that, the outcome of a commissioning beam data generation fully complies with vendor specification and published literature.展开更多
GFFs with less than 0.4 dB peak-to-peak error functions are routinely fabricated using commercially available coating machines by utilizing the natural error compensation mechanism of wavelength variable turning point...GFFs with less than 0.4 dB peak-to-peak error functions are routinely fabricated using commercially available coating machines by utilizing the natural error compensation mechanism of wavelength variable turning point optical monitoring method.展开更多
We demonstrate a novel gain-flattening filter based on all fiber Mach-Zehnder interferometers for Sb-doped silica hybrid EDFA. A gain flatness of better than 0.9dB has been achieved for three concatenated filters in C...We demonstrate a novel gain-flattening filter based on all fiber Mach-Zehnder interferometers for Sb-doped silica hybrid EDFA. A gain flatness of better than 0.9dB has been achieved for three concatenated filters in C-band.展开更多
This study is to investigate three common potential setup uncertainties during Linac commissioning and annual QA and to evaluate how these uncertainties propagate into the quality of beam profiles and patient dosimetr...This study is to investigate three common potential setup uncertainties during Linac commissioning and annual QA and to evaluate how these uncertainties propagate into the quality of beam profiles and patient dosimetry using gamma analysis. Three uncertainty scenarios were purposely introduced for gantry position tilted from 0˚- 3˚(scenario 1), isocenter position misaligned from 0 - 6 mm (scenario 2) and SAD changed from 99.5 - 103 cm (scenario 3). A 60 × 60 × 60 cm<sup>3</sup> water phantom cube was created to replicate a 3D water tank in VarianEclipse (V.11) treatment planning system (Varian Medical Systems, Palo Alto, CA). For each scenario, beam data profiles (crossline and diagonal) and PDD curves were calculated at different field sizes and depths for three energies: 6 MV, 6 MV-FFF and 10 MV-FFF. Gamma analysis method was used to compare a total of 263 profiles to baseline using a 1%/1mm parameter with 90% gamma passing rate criteria. For scenario 1, a ≥90% gamma passing rate and ≤1% dose difference were seen on both crossline and diagonal profiles, and PDD curves for gantry tilted up to 2˚. For 3˚degree tilt, the gamma passing rate decreased to ≤90% at depth of ≥20 cm for 6MV/6MV-FFF and depth of ≥12 cm for 10MV-FFF. For scenario 2, a ≤90% gamma passing rate and ≥1% dose difference were seen at depths from d<sub>max</sub> to 20 cm for all energies. For depths ≥20 cm, mostly ≥90% gamma passing rate and ≤1% dose difference were seen. For scenario 3, a ≥90% gamma passing rate and ≤1% dose difference were seen on ≤4 mm isocenter misalignments for all energies. In summary, gamma analysis of the beam profiles is a very sensitive test for SAD deviation scenarios and can reveal issues of sub millimeter setup uncertainty. However, it is not as sensitive for isocenter misalignment scenarios. The test is also more sensitive for FFF beams than flattening filter beams.展开更多
This work aims to summarize and evaluate the current planning progress based on the linear accelerator in stereotactic radiotherapy(SRT).The specific techniques include 3-dimensional conformal radiotherapy,dynamic con...This work aims to summarize and evaluate the current planning progress based on the linear accelerator in stereotactic radiotherapy(SRT).The specific techniques include 3-dimensional conformal radiotherapy,dynamic conformal arc therapy,intensity-modulated radiotherapy,and volumetric-modulated arc therapy(VMAT).They are all designed to deliver higher doses to the target volume while reducing damage to normal tissues;among them,VMAT shows better prospects for application.This paper reviews and summarizes several issues on the planning of SRT to provide a reference for clinical application.展开更多
文摘Background: In linear accelerators, the treatment field’s uniform intensity is achieved by including a flattening filter in the beam. However, to produce more conformal dose distributions, contemporary radiotherapy practice now frequently uses fluence and aperture modifying techniques, such as volumetric modulated arc therapy. In these circumstances, the flattening filter in the beam manufacturing process is no longer required. It is therefore necessary to compare the monitor units of 6 MV and flattening filter free plans and how it influences the gamma pass rates to determine which is best for treating cervical cancer with pelvic lymph node metastasis. Methods: VMAT plans for fifteen patients with cervical cancer with pathological pelvic lymph node metastasis were included in this study. Each patient had two VMAT plans using conventional 6 MV beam with flattening filter and one with flattening filter free beam (FFF). The VMAT plans were made using two arcs, and then recalculated to give the planned dose distribution to the detectors in a Delta4 phantom. The VMAT plans were irradiated on the Delta4 phantom using an Elekta linear accelerator (6 MV). Results: The mean monitor unit for the 6 MV plans was 506.3 MU and a standard deviation of 48.6 while that of the FFF plans had a mean MU of 701.5 with a standard deviation of 87.6. The total monitor units (MUs) for the FFF plans were significantly greater than the 6 MV plans (p = 6.1 × 10<sup>-5</sup>). Conclusion: Flattening filter free (FFF) plans require more numbers of monitor units in comparison to conventional 6 MV filtered beams for external radiation of cervical cancer with pelvic lymph nodes involvement.
文摘Motive of the study is to present quantitative and qualitative analysis and comparison of beam data measurement with FF (flattening filter) and FFF (flattening filter free) beam in a Varian TrueBeam<sup>TM</sup> Medical Linear Accelerator. Critique of beam characterization and evolution of dosimetric properties for 6 MV, 10 MV, 15 MV FF beam and 6 MVFFF, 10 MVFFF FFF beam has been carried out. We performed the comparison of photon beam data for two standard FF photon energy 6 MV, 10 MV verses 6 MVFFF, and 10 MVFFF FFF beam. Determination and comparison of parameter involved PDD (Percentage depth dose), Depth dose profile, Symmetry, Flatness, Quality index, Relative output factor, Penumbra, Transmission factor, DLG (Dosimetric leaf gap), in addition to degree of Un-flatness and off-axis ratio of FFF beam. Outcomes of presenting study had shown that change of various parameters such as Percentage depth dose curves, Shape of the depth dose profile, Transmission, Value of quality index and significant rise in surface dose for FFF in comparison with FF beam. Differences in the output factor at lower and higher field sizes for FFF beam compared to that of FF beam were found. The maximum output factor deviation between 6 MV and 6 MVFFF was found to be 4.55%, whereas in 10 MV and 10 MVFFF was 5.71%. Beam quality TPR20/10 for FFF beam was found to be lesser in magnitude, 5.42% for 6 MVFFF whereas 4.50% for 10 MVFFF compared to 6 MV and 10 MV FF beam respectively. Jaw transmission and interleaf leakage for FFF beam were found to be lesser than FF beam. Also DLG for FFF beam was found to be lesser in magnitude comparable to that of flattened beam. This study is mainly inclined towards evaluation and comparison of the FF and FFF beam. It has been observed that, the outcome of a commissioning beam data generation fully complies with vendor specification and published literature.
文摘GFFs with less than 0.4 dB peak-to-peak error functions are routinely fabricated using commercially available coating machines by utilizing the natural error compensation mechanism of wavelength variable turning point optical monitoring method.
文摘We demonstrate a novel gain-flattening filter based on all fiber Mach-Zehnder interferometers for Sb-doped silica hybrid EDFA. A gain flatness of better than 0.9dB has been achieved for three concatenated filters in C-band.
文摘This study is to investigate three common potential setup uncertainties during Linac commissioning and annual QA and to evaluate how these uncertainties propagate into the quality of beam profiles and patient dosimetry using gamma analysis. Three uncertainty scenarios were purposely introduced for gantry position tilted from 0˚- 3˚(scenario 1), isocenter position misaligned from 0 - 6 mm (scenario 2) and SAD changed from 99.5 - 103 cm (scenario 3). A 60 × 60 × 60 cm<sup>3</sup> water phantom cube was created to replicate a 3D water tank in VarianEclipse (V.11) treatment planning system (Varian Medical Systems, Palo Alto, CA). For each scenario, beam data profiles (crossline and diagonal) and PDD curves were calculated at different field sizes and depths for three energies: 6 MV, 6 MV-FFF and 10 MV-FFF. Gamma analysis method was used to compare a total of 263 profiles to baseline using a 1%/1mm parameter with 90% gamma passing rate criteria. For scenario 1, a ≥90% gamma passing rate and ≤1% dose difference were seen on both crossline and diagonal profiles, and PDD curves for gantry tilted up to 2˚. For 3˚degree tilt, the gamma passing rate decreased to ≤90% at depth of ≥20 cm for 6MV/6MV-FFF and depth of ≥12 cm for 10MV-FFF. For scenario 2, a ≤90% gamma passing rate and ≥1% dose difference were seen at depths from d<sub>max</sub> to 20 cm for all energies. For depths ≥20 cm, mostly ≥90% gamma passing rate and ≤1% dose difference were seen. For scenario 3, a ≥90% gamma passing rate and ≤1% dose difference were seen on ≤4 mm isocenter misalignments for all energies. In summary, gamma analysis of the beam profiles is a very sensitive test for SAD deviation scenarios and can reveal issues of sub millimeter setup uncertainty. However, it is not as sensitive for isocenter misalignment scenarios. The test is also more sensitive for FFF beams than flattening filter beams.
文摘This work aims to summarize and evaluate the current planning progress based on the linear accelerator in stereotactic radiotherapy(SRT).The specific techniques include 3-dimensional conformal radiotherapy,dynamic conformal arc therapy,intensity-modulated radiotherapy,and volumetric-modulated arc therapy(VMAT).They are all designed to deliver higher doses to the target volume while reducing damage to normal tissues;among them,VMAT shows better prospects for application.This paper reviews and summarizes several issues on the planning of SRT to provide a reference for clinical application.