In tea plants,the abundant flavonoid compounds are responsible for the health benefits for the human body and define the astringent flavor profile.While the downstream mechanisms of flavonoid biosynthesis have been ex...In tea plants,the abundant flavonoid compounds are responsible for the health benefits for the human body and define the astringent flavor profile.While the downstream mechanisms of flavonoid biosynthesis have been extensively studied,the role of chalcone synthase(CHS)in this secondary metabolic process in tea plants remains less clear.In this study,we compared the evolutionary profile of the flavonoid metabolism pathway and discovered that gene duplication of CHS occurred in tea plants.We identified three CsCHS genes,along with a CsCHS-like gene,as potential candidates for further functional investigation.Unlike the CsCHS-like gene,the CsCHS genes effectively restored flavonoid production in Arabidopsis chs-mutants.Additionally,CsCHS transgenic tobacco plants exhibited higher flavonoid compound accumulation compared to their wild-type counterparts.Most notably,our examination of promoter and gene expression levels for the selected CHS genes revealed distinct responses to UV-B stress in tea plants.Our findings suggest that environmental factors such as UV-B exposure could have been the key drivers behind the gene duplication events in CHS.展开更多
The aim of the present work is to assess the value of Detarium Senegalense by determining the content of total phenols, total flavonoids and total anthocyanins, and by evaluating the free radical scavenging activity o...The aim of the present work is to assess the value of Detarium Senegalense by determining the content of total phenols, total flavonoids and total anthocyanins, and by evaluating the free radical scavenging activity of Detarium Senegalense extracts. For this purpose, sequential extraction using solvents of increasing polarity was essential. The various extracts obtained underwent phytochemical and biochemical analyses. Phytochemical screening revealed the presence of flavonoids, alkaloids, tannins, polyphenols, anthocyanins and steroids/terpenes. Quantitative analysis of total polyphenols, total flavonoids and total anthocyanins yielded the following results: total flavonoids (0.803 ± 0029 mg EQ/100g P for acetone extract of roots and 0.871 ± 0.401 mg EQ/100g P for methanol extract of leaves);total polyphenols (23.298 ± 12.68 mg EAG/100g P for acetone extract of roots and 24.69 ± 0.49 401 mg EAG/100g P for methanol extract of leaves);total monomeric anthocyanins (44.697 ± 0.939 mg EC3G/100g P and 16.699 ± 0.193 mg EC3G/100g P respectively for acetone and methanol extracts of stem bark). DPPH free radical scavenging activity was 1.674 ± 0.023 mg/mL for the acetone extract and 0.934 ± 0.24 mg/mL for the methanol extract of roots. .展开更多
Glycation of proteins and DNA forms advanced glycation end products(AGEs)causing cell and tissue dysfunction and subsequent various chronic diseases,in particular,metabolic and age-related diseases.Targeted AGE inhibi...Glycation of proteins and DNA forms advanced glycation end products(AGEs)causing cell and tissue dysfunction and subsequent various chronic diseases,in particular,metabolic and age-related diseases.Targeted AGE inhibition includes scavengers of reactive carbonyl species(RCS)such as methylglyoxal(MG),glyoxalase-1 enhancers,Nrf2/ARE pathway activators,AGE/RAGE formation inhibitors and other antiglycatng agents.Citrus flavonoids have demonstrated antioxidant and anti-inflammatory effects and are also found to be effective antiglycating agents.Herein,we reviewed the up to date progress of the antiglycation effects of citrus flavonoids and associated mechanisms.Major citrus flavonoids,hesperedin and its aglycone,hesperetin,inhibited glycation by scavenging MG forming mono-or di-flavonoid adducts with MG,enhanced the activity of glyoxase-1,activated Akt/Nrf2 signal pathway while inhibiting AGE/RAGE/NF-κB pathway,reduced the formation of Nε-(carboxylmethyl)lysine(CML)and pentosidine,inhibited aldol reductase activity and decreased the levels of fructosamine.The antiglycating activity and mechanisms of other flavonoids was also summarized in this review.In conclusion,citrus flavonoids possess effective antiglycating activity via different mechanisms,yet there are many challenging questions remaining to be studied in the near future such as in vivo testing and human study of citrus flavonoids for efficacy,effectiveness and adverse effects of citrus flavonoids as a functional food in managing high levels of AGEs and controlling AGE-induced chronic diseases,diabetic complications in particular.展开更多
In this study,high performance liquid chromatography(HPLC)and RNA-seq transcriptome sequencing were used to study the changes in soluble sugar components and flavonoids in Prunus persica‘Jinxiangyu’at different deve...In this study,high performance liquid chromatography(HPLC)and RNA-seq transcriptome sequencing were used to study the changes in soluble sugar components and flavonoids in Prunus persica‘Jinxiangyu’at different developmental stages(20–90 d after flowering)and screen the key genes regulating the formation of soluble sugar and flavonoids in the fruits.The results showed that 60–85 d after flowering was the key stage of quality formation of Prunus persica‘Jinxiangyu’,and the content of soluble sugar,soluble solid,fructose,and sucrose in the fruit increased significantly during this period.The sugar content of ripe fruits was mainly fructose and sucrose.The content of kaempferol glycoside was low in the fruit.Quercetin glycoside content was higher in the young fruit stage and decreased with fruit maturity.There were no anthocyanin compounds in the fruit.The expression levels of genes involved in flavonoid metabolism(ANS,DFR,F3H,FLS,4CL1,etc.)were low in the fruit.A total of 181 differentially expressed genes were identified during fruit development to participate in five sugar metabolism pathways,among which the SDH gene had a higher expression level,which continuously rised in the later stage of fruit development.It mainly promoted the accumulation of fructose content in the later stage of fruit development.The expression levels of SPS1,SS,and SS1 genes were continuously up-regulated,which played a key role in sucrose regulation.The higher expression levels of SUS3 and INVA genes in the early stage of fruit development promoted the degradation of sucrose.展开更多
[Objectives]This study was conducted to screen lavandulyl flavonoids with anti-inflammatory activity from Sophora flavescens.[Methods]35 compounds were screened from traditional Chinese medicine S.flavescens using the...[Objectives]This study was conducted to screen lavandulyl flavonoids with anti-inflammatory activity from Sophora flavescens.[Methods]35 compounds were screened from traditional Chinese medicine S.flavescens using the nitric oxide(NO)anti-inflammatory activity model.[Results]Five components,8(xanthohumol),13(kurarinol),27(4-methoxysalicylic acid),28(b-resorcic acid)and 30(b-resorcic acid),exhibited significant anti-inflammatory activity,with IC 50 values of 5.99,4.76,6.96,3.41 and 5.22μM,respectively.Especially,8(xanthohumol)and 13(kurarinol)were typical lavandulyl flavonoids in S.flavescens,which were worth further exploration.Furthermore,UPLC-Q-Exactive and GNPS molecular networking technique were used for rapid analysis of lavandulyl flavonoids from S.flavescens.A total of 15 components were identified.[Conclusions]This work lays a theoretical foundation for further separation and analysis of lavandulyl flavonoids with anti-inflammatory activity from S.flavescens.展开更多
As a new type of green solvents,deep eutectic solvents(DESs)have the advantages of strong extraction ability,designability,simple preparation,low price,recoverability and biodegradation,and show great application pote...As a new type of green solvents,deep eutectic solvents(DESs)have the advantages of strong extraction ability,designability,simple preparation,low price,recoverability and biodegradation,and show great application potential in the field of plant flavonoid extraction.In this paper,the definition,classification and preparation methods of DESs were introduced.The effects of DES composition,molar ratio of DES components,water content of DES systems,liquid-material ratio,extraction temperature,extraction time and extraction auxiliary techniques on the extraction yield of plant flavonoids were expounded.The recycling methods of DESs were summarized.Existing problems of DESs in the field of plant flavonoids extraction were pointed out,and further research direction and trend were analyzed and prospected.展开更多
[Objectives]This study was conducted to optimize the extraction process of total flavonoids from Penthorum chinense Pursh and compare their contents from different parts.[Methods]Single factor and orthogonal experimen...[Objectives]This study was conducted to optimize the extraction process of total flavonoids from Penthorum chinense Pursh and compare their contents from different parts.[Methods]Single factor and orthogonal experiments were designed to optimize the extraction process of total flavonoids from P.chinense Pursh with the volume fraction of ethanol,the ratio of material to liquid,heating reflux extraction time and extraction times as factors,and the content of total flavonoids as the index.A verification test was carried out.The optimized extraction process was adopted to compare the contents of total flavonoids from different parts of P.chinense Pursh.[Results]The best extraction process was extracting the powder of P.chinense Pursh for 2.0 h with 20 times of 55%ethanol by reflux twice.Under this condition,the contents of total flavonoids were 3.63%,8.90%,11.28%,and 4.36%from stems,leaves,flowers and whole grass of P.chinense Pursh,respectively.[Conclusions]The process is reasonable,feasible and stable,and can effectively extract total flavonoids from P.chinense Pursh.The contents of total flavonoids from different parts of P.chinense Pursh were quite different,and the value was higher in the leaves and flowers,so the proportions of leaves and flowers should be paid attention to in the industrial processing of P.chinense Pursh.展开更多
Aim: This study aimed to investigate the protective effects of flavonoids from the stem and leaves of Scutellaria baicalensis Georgi (SSFs) against Aβ<sub>1-42</sub>-induced oligodendrocytes (OL) damage. ...Aim: This study aimed to investigate the protective effects of flavonoids from the stem and leaves of Scutellaria baicalensis Georgi (SSFs) against Aβ<sub>1-42</sub>-induced oligodendrocytes (OL) damage. Methods: Immunofluorescence was used for the detection of myelin-associated glycoprotein (MAG), a characteristic protein of rat oligodendrocytes (OLN-93 cells). To evaluate the potential protective effects of SSFs on OLN-93 cells injured by Aβ<sub>1-42</sub>, an injury model was established by subjecting OLN-93 cells to Aβ<sub>1-42</sub> exposed. Cell morphology was examined using an inverted microscope, while cell viability was assessed using the colorimetric method of 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT). Additionally, lactate dehydrogenase (LDH) was measured using the pyruvic acid reduction assay. The Ginkgo biloba leaf extract (GBE) injection was used as a positive control. Results: A total of >95% of the MAG immunofluorescence-positive cells were identified as oligodendrocytes. Gradually increasing concentrations of SSFs impaired the cells, and the maximum nondetrimental dose for OLN-93 cells was 75 mg/L. This study assessed the effects of SSFs on OLN-93 cells damaged by Aβ<sub>1-42</sub>. The results indicated that SSFs significantly improved OLN-93 cell morphological abnormal changes, increased the OLN-93 cell survival rate, and reduced LDH release. Conclusion: SSFs can alleviate Aβ<sub>1-42</sub>-induced damage of OL.展开更多
In order to optimize the ultrasonic extraction technique for the total flavonoid of leaf yellows plus, the contents of 21 leaf yellows plus total flavonoid from four regions in Heilongjiang Province were comparatively...In order to optimize the ultrasonic extraction technique for the total flavonoid of leaf yellows plus, the contents of 21 leaf yellows plus total flavonoid from four regions in Heilongjiang Province were comparatively analyzed. The ultrasonic extraction technology was optimized by Box-Behnken response surface method, and the total flavonoid content of 21 kinds of Acanthopanax senticosus(Rupr. et Maxim.) Harms from different producing areas were analyzed by cluster analysis. The optimal process conditions were determined as ultrasonic time 30 min, solid-liquid ratio 1 : 12 and ultrasonic power 250 W, and the average yield of the total flavonoid was 1.453 mg·g^ (-1). By optimizing the ultrasonic-assisted extraction method, the total flavonoid content from different producing areas was compared in the experiment, which provided certain data support for the optimization of the extraction process in the future and laid a certain theoretical foundation for the quality analysis of Chinese medicinal materials.展开更多
[Objectives]To study the inhibitory activity of two flavonoid glycosides isolated from Chlorophytum comosum Laxum R.Br on human nasopharyngeal carcinoma(NPC)cell line 5-8F in vitro and its mechanism.[Methods]The flavo...[Objectives]To study the inhibitory activity of two flavonoid glycosides isolated from Chlorophytum comosum Laxum R.Br on human nasopharyngeal carcinoma(NPC)cell line 5-8F in vitro and its mechanism.[Methods]The flavonoid glycosides were isolated and purified from the ethanol alcoholic extract of the roots of Liliaceae plant Chlorophytum comosum by silica gel column chromatography,macroporous resin column chromatography,Sephadex LH-20,and reverse column chromatography(ODS).The inhibitory activity of flavonoid glycosides on human nasopharyngeal carcinoma cells was analyzed by CCK-8 method,and the potential mechanism was preliminarily analyzed by molecular docking.[Results]Two flavonoid glycosides were identified as isovitexin 2″-0-rhamnoside and 7-2″-di-O-β-glucopyranosylisovitexin.Two flavonoid glycosides showed promising inhibitory effect on human nasopharyngeal carcinoma cell line 5-8F,with IC_(50) values of 24.8 and 27.5μmol/L,respectively.Molecular docking results showed that the potential targets of two flavonoid glycosides include CyclinD1,Bcl-2β-Catenin,ILK,TGF-β,in addition,two glycosides showed higher predicted binding affinity towards CyclinD1,which verifies the cytotoxicity of the two compounds on human nasopharyngeal carcinoma cell line 5-8F in vitro.[Conclusions]Two flavonoid glycosides are the active molecules in Chlorophytum comosum that can inhibit the proliferation of human nasopharyngeal carcinoma cells,and have the potential to be used in the research and development of anti nasopharyngeal carcinoma drugs.展开更多
BACKGROUND Flavonoids,the main class of polyphenols,exhibit antioxidant and antihypertensive properties.AIM To prospectively investigate the impact of flavonoids on arterial stiffness in patients with chronic kidney d...BACKGROUND Flavonoids,the main class of polyphenols,exhibit antioxidant and antihypertensive properties.AIM To prospectively investigate the impact of flavonoids on arterial stiffness in patients with chronic kidney disease(CKD)stagesⅠ-Ⅳ.METHODS In this prospective,single-arm study,CKD patients with arterial hypertension and diabetes mellitus were enrolled.Baseline demographic,clinical,and laboratory variables were recorded.Patients received daily treatment with a phenol-rich dietary supplement for 3 months.Blood pressure,arterial stiffness(carotidfemoral pulse wave velocity,central pulse pressure),and oxidative stress markers(protein carbonyls,total phenolic compound,total antioxidant capacity)were measured at baseline and at study end.RESULTS Sixteen patients(mean age:62.5 years,87.5%male)completed the study.Following intervention,peripheral systolic blood pressure decreased significantly by 14 mmHg(P<0.001).Carotid-femoral pulse wave velocity decreased from 8.9 m/s(baseline)to 8.2 m/s(study end)(P<0.001),and central pulse pressure improved from 59 mmHg to 48 mmHg(P=0.003).Flavonoids also reduced oxidative stress markers including protein carbonyls(P<0.001),total phenolic compound(P=0.001),and total antioxidant capacity(P=0.013).CONCLUSION Flavonoid supplementation in CKD patients shows promise in improving blood pressure,arterial stiffness,and oxidative stress markers.展开更多
Diabetes is one of the most difficult chronic diseases to cure in the world,which seriously affects people’s health and quality of life.Flavonoids in buckwheat can regulate blood glucose levels by inhibitingα-amylas...Diabetes is one of the most difficult chronic diseases to cure in the world,which seriously affects people’s health and quality of life.Flavonoids in buckwheat can regulate blood glucose levels by inhibitingα-amylase activity.Therefore,sweet buckwheat produced in Inner Mongolia was used as the research object,and buckwheat fl avonoids were extracted by ultrasonic-assisted extraction method.Total fl avonoids content was determined by ultraviolet-visible spectrophotometry.With acarbose as the positive control,the inhibition test ofα-amylase was carried out by DNS colorimetry to study the inhibition behavior of fl avonoids onα-amylase activity.The results showed that the extraction process of flavonoids was stable and reliable,and the established method for the determination of flavonoids was simple,accurate and reproducible.The total flavonoids content of buckwheat samples was 2.706 mg/g,buckwheat total fl avonoids extraction solution had an inhibitory eff ect onα-amylase,and its median inhibition concentration(IC_(50))was 38.53 mg/mL.The results of this experiment provide a technical reference for the development and utilization of fl avonoids in Inner Mongolia sweet buckwheat,and provide a theoretical reference for the development and application of flavonoid-rich hypoglycemic food.展开更多
The purpose of this project is used for exploring the mechanism of Callistephus chinensis in the treatment of diabetes by network pharmacology and molecular docking methods.The target of Callistephus chinensis was obt...The purpose of this project is used for exploring the mechanism of Callistephus chinensis in the treatment of diabetes by network pharmacology and molecular docking methods.The target of Callistephus chinensis was obtained from SwissTargetPrediction database,while the target related to diabetes was obtained from GeneCards and OMIM databases.The target was added in String database to build the protein interaction network.GO biological process enrichment analysis and KEGG pathway enrichment analysis were carried out by Metascape software,then the target-pathway network was constructed.Molecular docking was carried out in Discovery Studio 2016 Client software to verify the binding force of Callistephus chinensis flavonoid compounds with key targets.In this study,10 potential active components were selected from the flavonoid monomer compounds of Callistephus chinensis.1847 biological processes(BP),126 cell compositions(CC)and 256 molecular functions(MF)were obtained by GO enrichment analysis;a total of 194 pathways were involved in KEGG enrichment analysis of 192 cross targets.Network analysis showed that quercetin was the main active component of flavonoids in the treatment of diabetes,AKT1,TNF,VEGFA,EGFR,SRC and other related signals were in relation to the treatment of diabetes.This study showed that Callistephus chinensis flavonoid compounds play a role in the treatment of diabetes by regulating multi-target and multi-pathway.展开更多
This study aims to identify a natural plant chemical with hypolipidemic effects that can be used to treat high cholesterol without adverse reactions.Through network pharmacology screening,it was found that Rosae Rugos...This study aims to identify a natural plant chemical with hypolipidemic effects that can be used to treat high cholesterol without adverse reactions.Through network pharmacology screening,it was found that Rosae Rugosae Flos(RF)flavonoids had potential therapeutic effects on hyperlipidemia and its mechanism of action was discussed.TCMSP and GeneCards databases were used to obtain active ingredients and disease targets.Venn diagrams were drawn to illustrate the findings.The interaction network diagram was created using Cytoscape 3.8.0 software.The PPI protein network was constructed using String.GO and KEGG enrichment analysis was performed using Metascape.The results revealed 2 active flavonoid ingredients and 60 potential targets in RF.The key targets,including CCL2,PPARG,and PPARA,were found to play a role in multiple pathways such as the AGE-RAGE signaling pathway,lipid and atherosclerosis,and cancer pathway in diabetic complications.The solvent extraction method was optimized for efficient flavonoid extraction based on network pharmacology prediction results.This was achieved through a single factor and orthogonal test,resulting in an optimum process with a reflux time of 1.5 h,a solid-liquid ratio of 1:13 g/mL,and an ethanol concentration of 50%.展开更多
This study aimed to investigate the mechanism of action of Sophora Flos(SF)in the treatment of hyperlipidemia(HLP)using network pharmacology and molecular docking methods,and to optimize the extraction process of the ...This study aimed to investigate the mechanism of action of Sophora Flos(SF)in the treatment of hyperlipidemia(HLP)using network pharmacology and molecular docking methods,and to optimize the extraction process of the predicted active components.The STRING database was used for protein interaction analysis and PPI network construction via Cytoscape 3.9.1.Pymol was employed for docking and visualization.An extensive review of SF identifi ed 6 active ingredients,297 related objectives,84 disease objectives,and 57 total objectives.After protein interaction and topology analysis,18 core targets were identified.These included 146 gene function entries(P<0.05).Active compounds,mainly flavonoids,can modulate the expression of various proteins such as TNF,IL-6,IL-1β,PPARG,and TGFB1 to achieve therapeutic effects on HLP.The network pharmacology and molecular docking results suggested that the active fl avonoids component in SF may be related to the treatment of hyperlipidemia.Therefore,the orthogonal experiment method was used to optimize the extraction process of total fl avonoid from SF using ethanol refl ux extraction,based on a single factor experiment.The effects of refl ux time,solid-liquid ratio,ethanol concentration,and other factors on the extraction of total fl avonoid from SF were investigated.The optimum process conditions were refl ux time of 1.25 h,solid-liquid ratio of 1:15 g/mL and ethanol concentration of 60%.Using these conditions,the purity of total fl avonoid extracted from SF was 70.33±0.22%.展开更多
Alzheimer's disease is a neurodegenerative disease that affects a large proportion of older adult people and is characterized by memory loss,progressive cognitive impairment,and various behavioral disturbances.Alt...Alzheimer's disease is a neurodegenerative disease that affects a large proportion of older adult people and is characterized by memory loss,progressive cognitive impairment,and various behavioral disturbances.Although the pathological mechanisms underlying Alzheimer's disease are complex and remain unclear,previous research has identified two widely accepted pathological characteristics:extracellular neuritic plaques containing amyloid beta peptide,and intracellular neurofibrillary tangles containing tau.Furthermore,research has revealed the significant role played by neuroinflammation over recent years.The inflammatory microenvironment mainly consists of microglia,astrocytes,the complement system,chemokines,cytokines,and reactive oxygen intermediates;collectively,these factors can promote the pathological process and aggravate the severity of Alzheimer's disease.Therefore,the development of new drugs that can target neuroinflammation will be a significant step forward for the treatment of Alzheimer's disease.Flavonoids are plant-derived secondary metabolites that possess various bioactivities.Previous research found that multiple natural flavonoids could exert satisfactory treatment effects on the neuroinflammation associated with Alzheimer's disease.In this review,we describe the pathogenesis and neuroinflammatory processes of Alzheimer's disease,and summarize the effects and mechanisms of 13 natural flavonoids(apigenin,luteolin,naringenin,quercetin,morin,kaempferol,fisetin,isoquercitrin,astragalin,rutin,icariin,mangiferin,and anthocyanin)derived from plants or medicinal herbs on neuroinflammation in Alzheimer's disease.As an important resource for the development of novel compounds for the treatment of critical diseases,it is essential that we focus on the exploitation of natural products.In particular,it is vital that we investigate the effects of flavonoids on the neuroinflammation associated with Alzheimer's disease in greater detail.展开更多
Flavonoids are critical secondary metabolites that determine the health benefits and flavor of tea,while chlorophylls are important contributors to the appearance of tea.However,transcription factors(TFs)that can inte...Flavonoids are critical secondary metabolites that determine the health benefits and flavor of tea,while chlorophylls are important contributors to the appearance of tea.However,transcription factors(TFs)that can integrate both chlorophyll biosynthesis and flavonoid accumulation in response to specific light signals are rarely identified.In this study,we report that the GOLDEN 2-LIKE TF pair,CsGLK1 and CsGLK2,orchestrate UV-B-induced responses in the chlorophyll biosynthesis and flavonoid accumulation of tea leaves.The absence of solar UV-B reduced the transcriptional expression of CsGLKs in the tea leaves and was highly correlated with a decrease in flavonoid levels(especially flavonol glycosides)and the expression of genes and TFs involved in chlorophyll biosynthesis and flavonoid accumulation.In vivo and in vitro molecular analyses showed that CsGLKs could be regulated by the UV-B signal mediator CsHY5,and could directly bind to the promoters of gene and TF involved in light-harvesting(CsLhcb),chlorophyll biosynthesis(CsCHLH,CsHEMA1,and CsPORA),and flavonoid accumulation(CsMYB12,CsFLSa,CsDFRa,and CsLARa),eventually leading to UV-B-induced responses in the chlorophylls and flavonoids of tea leaves.Furthermore,UV-B exposure increased the levels of total flavonoids,CsGLK1 protein,and expression of CsGLKs and target genes in the tea leaves.These results indicate that CsGLKs may modulate tea leaf characteristics by regulating chlorophyll biosynthesis and flavonoid accumulation in response to solar UV-B.As the first report on UV-B-induced changes in flavonoid and chlorophyll regulation mediated by CsGLKs,this study improves our understanding of the environmental regulations regarding tea quality and sheds new light on UV-B-induced flavonoid responses in higher plants.展开更多
Background Dietary bamboo leaf flavonoids(BLFs)are rarely used in poultry production,and it is unknown whether they influence meat texture profile,perceived color,or microstructure.Results A total of 720 one-day-old A...Background Dietary bamboo leaf flavonoids(BLFs)are rarely used in poultry production,and it is unknown whether they influence meat texture profile,perceived color,or microstructure.Results A total of 720 one-day-old Arbor Acres broilers were supplemented with a basal diet with 20 mg bacitracin/kg,50 mg BLFs/kg,or 250 mg BLFs/kg or without additions.Data showed that the dietary BLFs significantly(P<0.05)changed growth performance and the texture profile.In particular,BLFs increased birds’average daily gain and average daily feed intake,decreased the feed:gain ratio and mortality rate,improved elasticity of breast meat,enhanced the gumminess of breast and leg meat,and decreased the hardness of breast meat.Moreover,a significant(P<0.05)increase in redness(a*)and chroma(c*)of breast meat and c*and water-holding capacity of leg meat was found in BLF-supplemented broilers compared with control broilers.In addition,BLFs supplementation significantly decreased(P<0.05)theβ-sheet ratio and serum malondialdehyde and increased theβ-turn ratio of protein secondary structure,superoxide dismutase,and glutathione peroxidase of breast meat and total antioxidant capacity and catalase of serum.Based on the analysis of untargeted metabolome,BLFs treatment considerably altered 14 metabolites of the breast meat,including flavonoids,amino acids,and organic acids,as well as phenolic and aromatic compounds.Conclusions Dietary BLFs supplementation could play a beneficial role in improving meat quality and sensory color in the poultry industry by changing protein secondary structures and modulating metabolites.展开更多
Flavonoids such as baohuoside I and icaritin are the major active compounds in Epimedii Folium(EF)and possess excellent therapeutic effects on various diseases.Encouragingly,in 2022,icaritin soft capsules were approve...Flavonoids such as baohuoside I and icaritin are the major active compounds in Epimedii Folium(EF)and possess excellent therapeutic effects on various diseases.Encouragingly,in 2022,icaritin soft capsules were approved to reach the market for the treatment of hepatocellular carcinoma(HCC)by National Medical Products Administration(NMPA)of China.Moreover,recent studies demonstrate that icaritin can serve as immune-modulating agent to exert anti-tumor effects.Nonetheless,both production efficiency and clinical applications of epimedium flavonoids have been restrained because of their low content,poor bioavailability,and unfavorable in vivo delivery efficiency.Recently,various strategies,including enzyme engineering and nanotechnology,have been developed to increase productivity and activity,improve delivery efficiency,and enhance therapeutic effects of epimedium flavonoids.In this review,the structure-activity relationship of epimedium flavonoids is described.Then,enzymatic engineering strategies for increasing the productivity of highly active baohuoside I and icaritin are discussed.The nanomedicines for overcoming in vivo delivery barriers and improving therapeutic effects of various diseases are summarized.Finally,the challenges and an outlook on clinical translation of epimedium flavonoids are proposed.展开更多
The growing interest in the potential biological activity of polyphenols and flavonoids has highlighted necessity to assess their content in fresh and dried pepper from Ivory Coast. The total polyphenol content was de...The growing interest in the potential biological activity of polyphenols and flavonoids has highlighted necessity to assess their content in fresh and dried pepper from Ivory Coast. The total polyphenol content was determined using the Folin-Ciocalteu test and the total flavonoid content was also measured spectrophotometrically using the aluminum chloride colorimetric test. The results obtained indicate the total polyphenol levels of fresh and dried peppers are higher in the samples collected in Danane (0.8 ± 0.05 mg GAE/100g) and in Azaguie (0.4 ± 0.08 mg GAE/100g). The lowest concentrations were obtained with fresh and dried pepper samples collected in N’douci (0.22 ± 0.02 mg GAE/100g) and in PK 103 (0.22 ± 0.02 mg GAE/100g). The highest content of total flavonoids was revealed in the locality of PK 103 (1.85 ± 0.62 mg EC/100g) followed by the locality of Maféré (1.37 ± 0.25 mg EC/100g) respectively for black pepper and green pepper. Then, the lowest flavonoid contents were obtained in the dried pepper of Lopou (0.57 ± 0.03 mg EC/100g) and the fresh pepper of PK 103 (0.47 ± 0.03 mg EC/100g). The results obtained highlight the importance of these black spices as promising sources of phenolic compounds and could be used in pharmaceutical treatments and in food.展开更多
基金supported by the National Natural Science Foundation of China(U21A20232,32372756,and 32202551).
文摘In tea plants,the abundant flavonoid compounds are responsible for the health benefits for the human body and define the astringent flavor profile.While the downstream mechanisms of flavonoid biosynthesis have been extensively studied,the role of chalcone synthase(CHS)in this secondary metabolic process in tea plants remains less clear.In this study,we compared the evolutionary profile of the flavonoid metabolism pathway and discovered that gene duplication of CHS occurred in tea plants.We identified three CsCHS genes,along with a CsCHS-like gene,as potential candidates for further functional investigation.Unlike the CsCHS-like gene,the CsCHS genes effectively restored flavonoid production in Arabidopsis chs-mutants.Additionally,CsCHS transgenic tobacco plants exhibited higher flavonoid compound accumulation compared to their wild-type counterparts.Most notably,our examination of promoter and gene expression levels for the selected CHS genes revealed distinct responses to UV-B stress in tea plants.Our findings suggest that environmental factors such as UV-B exposure could have been the key drivers behind the gene duplication events in CHS.
文摘The aim of the present work is to assess the value of Detarium Senegalense by determining the content of total phenols, total flavonoids and total anthocyanins, and by evaluating the free radical scavenging activity of Detarium Senegalense extracts. For this purpose, sequential extraction using solvents of increasing polarity was essential. The various extracts obtained underwent phytochemical and biochemical analyses. Phytochemical screening revealed the presence of flavonoids, alkaloids, tannins, polyphenols, anthocyanins and steroids/terpenes. Quantitative analysis of total polyphenols, total flavonoids and total anthocyanins yielded the following results: total flavonoids (0.803 ± 0029 mg EQ/100g P for acetone extract of roots and 0.871 ± 0.401 mg EQ/100g P for methanol extract of leaves);total polyphenols (23.298 ± 12.68 mg EAG/100g P for acetone extract of roots and 24.69 ± 0.49 401 mg EAG/100g P for methanol extract of leaves);total monomeric anthocyanins (44.697 ± 0.939 mg EC3G/100g P and 16.699 ± 0.193 mg EC3G/100g P respectively for acetone and methanol extracts of stem bark). DPPH free radical scavenging activity was 1.674 ± 0.023 mg/mL for the acetone extract and 0.934 ± 0.24 mg/mL for the methanol extract of roots. .
基金support from the High Level Scientific Research Cultivation Project of Huanggang Normal University(202108504)from the National Natural Science Foundation of China(31571832)。
文摘Glycation of proteins and DNA forms advanced glycation end products(AGEs)causing cell and tissue dysfunction and subsequent various chronic diseases,in particular,metabolic and age-related diseases.Targeted AGE inhibition includes scavengers of reactive carbonyl species(RCS)such as methylglyoxal(MG),glyoxalase-1 enhancers,Nrf2/ARE pathway activators,AGE/RAGE formation inhibitors and other antiglycatng agents.Citrus flavonoids have demonstrated antioxidant and anti-inflammatory effects and are also found to be effective antiglycating agents.Herein,we reviewed the up to date progress of the antiglycation effects of citrus flavonoids and associated mechanisms.Major citrus flavonoids,hesperedin and its aglycone,hesperetin,inhibited glycation by scavenging MG forming mono-or di-flavonoid adducts with MG,enhanced the activity of glyoxase-1,activated Akt/Nrf2 signal pathway while inhibiting AGE/RAGE/NF-κB pathway,reduced the formation of Nε-(carboxylmethyl)lysine(CML)and pentosidine,inhibited aldol reductase activity and decreased the levels of fructosamine.The antiglycating activity and mechanisms of other flavonoids was also summarized in this review.In conclusion,citrus flavonoids possess effective antiglycating activity via different mechanisms,yet there are many challenging questions remaining to be studied in the near future such as in vivo testing and human study of citrus flavonoids for efficacy,effectiveness and adverse effects of citrus flavonoids as a functional food in managing high levels of AGEs and controlling AGE-induced chronic diseases,diabetic complications in particular.
文摘In this study,high performance liquid chromatography(HPLC)and RNA-seq transcriptome sequencing were used to study the changes in soluble sugar components and flavonoids in Prunus persica‘Jinxiangyu’at different developmental stages(20–90 d after flowering)and screen the key genes regulating the formation of soluble sugar and flavonoids in the fruits.The results showed that 60–85 d after flowering was the key stage of quality formation of Prunus persica‘Jinxiangyu’,and the content of soluble sugar,soluble solid,fructose,and sucrose in the fruit increased significantly during this period.The sugar content of ripe fruits was mainly fructose and sucrose.The content of kaempferol glycoside was low in the fruit.Quercetin glycoside content was higher in the young fruit stage and decreased with fruit maturity.There were no anthocyanin compounds in the fruit.The expression levels of genes involved in flavonoid metabolism(ANS,DFR,F3H,FLS,4CL1,etc.)were low in the fruit.A total of 181 differentially expressed genes were identified during fruit development to participate in five sugar metabolism pathways,among which the SDH gene had a higher expression level,which continuously rised in the later stage of fruit development.It mainly promoted the accumulation of fructose content in the later stage of fruit development.The expression levels of SPS1,SS,and SS1 genes were continuously up-regulated,which played a key role in sucrose regulation.The higher expression levels of SUS3 and INVA genes in the early stage of fruit development promoted the degradation of sucrose.
基金Supported by Guizhou Provincial Science and Technology(ZK(2022)-362,ZK(2024)-047,[2023]ZK01)The Innovation and Entrepreneurship Training Program for Undergraduates from China[202210660131,202310660082]+2 种基金Science Foundation of Guizhou Education Technology(2022-064)University Engineering Research Center for the Prevention and Treatment of Chronic Diseases by Authentic Medicinal Materials in Guizhou Province([2023]035)Science and Technology Research Project of Guizhou Administration of Traditional Chinese Medicine(QZYY-2024-134).
文摘[Objectives]This study was conducted to screen lavandulyl flavonoids with anti-inflammatory activity from Sophora flavescens.[Methods]35 compounds were screened from traditional Chinese medicine S.flavescens using the nitric oxide(NO)anti-inflammatory activity model.[Results]Five components,8(xanthohumol),13(kurarinol),27(4-methoxysalicylic acid),28(b-resorcic acid)and 30(b-resorcic acid),exhibited significant anti-inflammatory activity,with IC 50 values of 5.99,4.76,6.96,3.41 and 5.22μM,respectively.Especially,8(xanthohumol)and 13(kurarinol)were typical lavandulyl flavonoids in S.flavescens,which were worth further exploration.Furthermore,UPLC-Q-Exactive and GNPS molecular networking technique were used for rapid analysis of lavandulyl flavonoids from S.flavescens.A total of 15 components were identified.[Conclusions]This work lays a theoretical foundation for further separation and analysis of lavandulyl flavonoids with anti-inflammatory activity from S.flavescens.
基金Supported by Project of The Education Department of Fujian Province(JAT201227).
文摘As a new type of green solvents,deep eutectic solvents(DESs)have the advantages of strong extraction ability,designability,simple preparation,low price,recoverability and biodegradation,and show great application potential in the field of plant flavonoid extraction.In this paper,the definition,classification and preparation methods of DESs were introduced.The effects of DES composition,molar ratio of DES components,water content of DES systems,liquid-material ratio,extraction temperature,extraction time and extraction auxiliary techniques on the extraction yield of plant flavonoids were expounded.The recycling methods of DESs were summarized.Existing problems of DESs in the field of plant flavonoids extraction were pointed out,and further research direction and trend were analyzed and prospected.
基金Supported by Key Research and Development Program of Sichuan Province(2022YFS0436)Natural Science Foundation of Sichuan Province(2022NSFSC1738)+4 种基金Science and Technology Planning Project of Luzhou City(2021-JYJ-109,2023SYF120)Special Project of Traditional Chinese Medicine Scientific Research of Sichuan Provincial Administration of Traditional Chinese Medicine(2020CP0029)Southwest Medical University-Luzhou Hospital of Traditional Chinese Medicine Base Project(2019-LH003)Open Subject of Luzhou Key Laboratory of Fine Chemical Application Technology(HYJY-2106-B)Southwest Medical University Undergraduate Student Innovation and Entrepreneurship Training Program(202310632074).
文摘[Objectives]This study was conducted to optimize the extraction process of total flavonoids from Penthorum chinense Pursh and compare their contents from different parts.[Methods]Single factor and orthogonal experiments were designed to optimize the extraction process of total flavonoids from P.chinense Pursh with the volume fraction of ethanol,the ratio of material to liquid,heating reflux extraction time and extraction times as factors,and the content of total flavonoids as the index.A verification test was carried out.The optimized extraction process was adopted to compare the contents of total flavonoids from different parts of P.chinense Pursh.[Results]The best extraction process was extracting the powder of P.chinense Pursh for 2.0 h with 20 times of 55%ethanol by reflux twice.Under this condition,the contents of total flavonoids were 3.63%,8.90%,11.28%,and 4.36%from stems,leaves,flowers and whole grass of P.chinense Pursh,respectively.[Conclusions]The process is reasonable,feasible and stable,and can effectively extract total flavonoids from P.chinense Pursh.The contents of total flavonoids from different parts of P.chinense Pursh were quite different,and the value was higher in the leaves and flowers,so the proportions of leaves and flowers should be paid attention to in the industrial processing of P.chinense Pursh.
文摘Aim: This study aimed to investigate the protective effects of flavonoids from the stem and leaves of Scutellaria baicalensis Georgi (SSFs) against Aβ<sub>1-42</sub>-induced oligodendrocytes (OL) damage. Methods: Immunofluorescence was used for the detection of myelin-associated glycoprotein (MAG), a characteristic protein of rat oligodendrocytes (OLN-93 cells). To evaluate the potential protective effects of SSFs on OLN-93 cells injured by Aβ<sub>1-42</sub>, an injury model was established by subjecting OLN-93 cells to Aβ<sub>1-42</sub> exposed. Cell morphology was examined using an inverted microscope, while cell viability was assessed using the colorimetric method of 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT). Additionally, lactate dehydrogenase (LDH) was measured using the pyruvic acid reduction assay. The Ginkgo biloba leaf extract (GBE) injection was used as a positive control. Results: A total of >95% of the MAG immunofluorescence-positive cells were identified as oligodendrocytes. Gradually increasing concentrations of SSFs impaired the cells, and the maximum nondetrimental dose for OLN-93 cells was 75 mg/L. This study assessed the effects of SSFs on OLN-93 cells damaged by Aβ<sub>1-42</sub>. The results indicated that SSFs significantly improved OLN-93 cell morphological abnormal changes, increased the OLN-93 cell survival rate, and reduced LDH release. Conclusion: SSFs can alleviate Aβ<sub>1-42</sub>-induced damage of OL.
基金Supported by the Breeding Techniques for New Varieties of Acanthopanax senticosus(CZKYF2022-1-B023)。
文摘In order to optimize the ultrasonic extraction technique for the total flavonoid of leaf yellows plus, the contents of 21 leaf yellows plus total flavonoid from four regions in Heilongjiang Province were comparatively analyzed. The ultrasonic extraction technology was optimized by Box-Behnken response surface method, and the total flavonoid content of 21 kinds of Acanthopanax senticosus(Rupr. et Maxim.) Harms from different producing areas were analyzed by cluster analysis. The optimal process conditions were determined as ultrasonic time 30 min, solid-liquid ratio 1 : 12 and ultrasonic power 250 W, and the average yield of the total flavonoid was 1.453 mg·g^ (-1). By optimizing the ultrasonic-assisted extraction method, the total flavonoid content from different producing areas was compared in the experiment, which provided certain data support for the optimization of the extraction process in the future and laid a certain theoretical foundation for the quality analysis of Chinese medicinal materials.
基金Supported by Youth Fund Project of Zhaoqing University(QZ202235)Zhaoqing Science and Technology Plan Project(2022040311011).
文摘[Objectives]To study the inhibitory activity of two flavonoid glycosides isolated from Chlorophytum comosum Laxum R.Br on human nasopharyngeal carcinoma(NPC)cell line 5-8F in vitro and its mechanism.[Methods]The flavonoid glycosides were isolated and purified from the ethanol alcoholic extract of the roots of Liliaceae plant Chlorophytum comosum by silica gel column chromatography,macroporous resin column chromatography,Sephadex LH-20,and reverse column chromatography(ODS).The inhibitory activity of flavonoid glycosides on human nasopharyngeal carcinoma cells was analyzed by CCK-8 method,and the potential mechanism was preliminarily analyzed by molecular docking.[Results]Two flavonoid glycosides were identified as isovitexin 2″-0-rhamnoside and 7-2″-di-O-β-glucopyranosylisovitexin.Two flavonoid glycosides showed promising inhibitory effect on human nasopharyngeal carcinoma cell line 5-8F,with IC_(50) values of 24.8 and 27.5μmol/L,respectively.Molecular docking results showed that the potential targets of two flavonoid glycosides include CyclinD1,Bcl-2β-Catenin,ILK,TGF-β,in addition,two glycosides showed higher predicted binding affinity towards CyclinD1,which verifies the cytotoxicity of the two compounds on human nasopharyngeal carcinoma cell line 5-8F in vitro.[Conclusions]Two flavonoid glycosides are the active molecules in Chlorophytum comosum that can inhibit the proliferation of human nasopharyngeal carcinoma cells,and have the potential to be used in the research and development of anti nasopharyngeal carcinoma drugs.
基金Supported by the Greek Public Sector and the European Regional Development Fund,No.ΔΜΡ1-0010874 and No.MIS 5068931.
文摘BACKGROUND Flavonoids,the main class of polyphenols,exhibit antioxidant and antihypertensive properties.AIM To prospectively investigate the impact of flavonoids on arterial stiffness in patients with chronic kidney disease(CKD)stagesⅠ-Ⅳ.METHODS In this prospective,single-arm study,CKD patients with arterial hypertension and diabetes mellitus were enrolled.Baseline demographic,clinical,and laboratory variables were recorded.Patients received daily treatment with a phenol-rich dietary supplement for 3 months.Blood pressure,arterial stiffness(carotidfemoral pulse wave velocity,central pulse pressure),and oxidative stress markers(protein carbonyls,total phenolic compound,total antioxidant capacity)were measured at baseline and at study end.RESULTS Sixteen patients(mean age:62.5 years,87.5%male)completed the study.Following intervention,peripheral systolic blood pressure decreased significantly by 14 mmHg(P<0.001).Carotid-femoral pulse wave velocity decreased from 8.9 m/s(baseline)to 8.2 m/s(study end)(P<0.001),and central pulse pressure improved from 59 mmHg to 48 mmHg(P=0.003).Flavonoids also reduced oxidative stress markers including protein carbonyls(P<0.001),total phenolic compound(P=0.001),and total antioxidant capacity(P=0.013).CONCLUSION Flavonoid supplementation in CKD patients shows promise in improving blood pressure,arterial stiffness,and oxidative stress markers.
文摘Diabetes is one of the most difficult chronic diseases to cure in the world,which seriously affects people’s health and quality of life.Flavonoids in buckwheat can regulate blood glucose levels by inhibitingα-amylase activity.Therefore,sweet buckwheat produced in Inner Mongolia was used as the research object,and buckwheat fl avonoids were extracted by ultrasonic-assisted extraction method.Total fl avonoids content was determined by ultraviolet-visible spectrophotometry.With acarbose as the positive control,the inhibition test ofα-amylase was carried out by DNS colorimetry to study the inhibition behavior of fl avonoids onα-amylase activity.The results showed that the extraction process of flavonoids was stable and reliable,and the established method for the determination of flavonoids was simple,accurate and reproducible.The total flavonoids content of buckwheat samples was 2.706 mg/g,buckwheat total fl avonoids extraction solution had an inhibitory eff ect onα-amylase,and its median inhibition concentration(IC_(50))was 38.53 mg/mL.The results of this experiment provide a technical reference for the development and utilization of fl avonoids in Inner Mongolia sweet buckwheat,and provide a theoretical reference for the development and application of flavonoid-rich hypoglycemic food.
文摘The purpose of this project is used for exploring the mechanism of Callistephus chinensis in the treatment of diabetes by network pharmacology and molecular docking methods.The target of Callistephus chinensis was obtained from SwissTargetPrediction database,while the target related to diabetes was obtained from GeneCards and OMIM databases.The target was added in String database to build the protein interaction network.GO biological process enrichment analysis and KEGG pathway enrichment analysis were carried out by Metascape software,then the target-pathway network was constructed.Molecular docking was carried out in Discovery Studio 2016 Client software to verify the binding force of Callistephus chinensis flavonoid compounds with key targets.In this study,10 potential active components were selected from the flavonoid monomer compounds of Callistephus chinensis.1847 biological processes(BP),126 cell compositions(CC)and 256 molecular functions(MF)were obtained by GO enrichment analysis;a total of 194 pathways were involved in KEGG enrichment analysis of 192 cross targets.Network analysis showed that quercetin was the main active component of flavonoids in the treatment of diabetes,AKT1,TNF,VEGFA,EGFR,SRC and other related signals were in relation to the treatment of diabetes.This study showed that Callistephus chinensis flavonoid compounds play a role in the treatment of diabetes by regulating multi-target and multi-pathway.
文摘This study aims to identify a natural plant chemical with hypolipidemic effects that can be used to treat high cholesterol without adverse reactions.Through network pharmacology screening,it was found that Rosae Rugosae Flos(RF)flavonoids had potential therapeutic effects on hyperlipidemia and its mechanism of action was discussed.TCMSP and GeneCards databases were used to obtain active ingredients and disease targets.Venn diagrams were drawn to illustrate the findings.The interaction network diagram was created using Cytoscape 3.8.0 software.The PPI protein network was constructed using String.GO and KEGG enrichment analysis was performed using Metascape.The results revealed 2 active flavonoid ingredients and 60 potential targets in RF.The key targets,including CCL2,PPARG,and PPARA,were found to play a role in multiple pathways such as the AGE-RAGE signaling pathway,lipid and atherosclerosis,and cancer pathway in diabetic complications.The solvent extraction method was optimized for efficient flavonoid extraction based on network pharmacology prediction results.This was achieved through a single factor and orthogonal test,resulting in an optimum process with a reflux time of 1.5 h,a solid-liquid ratio of 1:13 g/mL,and an ethanol concentration of 50%.
文摘This study aimed to investigate the mechanism of action of Sophora Flos(SF)in the treatment of hyperlipidemia(HLP)using network pharmacology and molecular docking methods,and to optimize the extraction process of the predicted active components.The STRING database was used for protein interaction analysis and PPI network construction via Cytoscape 3.9.1.Pymol was employed for docking and visualization.An extensive review of SF identifi ed 6 active ingredients,297 related objectives,84 disease objectives,and 57 total objectives.After protein interaction and topology analysis,18 core targets were identified.These included 146 gene function entries(P<0.05).Active compounds,mainly flavonoids,can modulate the expression of various proteins such as TNF,IL-6,IL-1β,PPARG,and TGFB1 to achieve therapeutic effects on HLP.The network pharmacology and molecular docking results suggested that the active fl avonoids component in SF may be related to the treatment of hyperlipidemia.Therefore,the orthogonal experiment method was used to optimize the extraction process of total fl avonoid from SF using ethanol refl ux extraction,based on a single factor experiment.The effects of refl ux time,solid-liquid ratio,ethanol concentration,and other factors on the extraction of total fl avonoid from SF were investigated.The optimum process conditions were refl ux time of 1.25 h,solid-liquid ratio of 1:15 g/mL and ethanol concentration of 60%.Using these conditions,the purity of total fl avonoid extracted from SF was 70.33±0.22%.
基金the Key Program of Natural Science Foundation of Shaanxi Province of China,No.2022JZ-46the Fundamental Research Funds for the Central Universities,No.GK202103079(both to QZ)。
文摘Alzheimer's disease is a neurodegenerative disease that affects a large proportion of older adult people and is characterized by memory loss,progressive cognitive impairment,and various behavioral disturbances.Although the pathological mechanisms underlying Alzheimer's disease are complex and remain unclear,previous research has identified two widely accepted pathological characteristics:extracellular neuritic plaques containing amyloid beta peptide,and intracellular neurofibrillary tangles containing tau.Furthermore,research has revealed the significant role played by neuroinflammation over recent years.The inflammatory microenvironment mainly consists of microglia,astrocytes,the complement system,chemokines,cytokines,and reactive oxygen intermediates;collectively,these factors can promote the pathological process and aggravate the severity of Alzheimer's disease.Therefore,the development of new drugs that can target neuroinflammation will be a significant step forward for the treatment of Alzheimer's disease.Flavonoids are plant-derived secondary metabolites that possess various bioactivities.Previous research found that multiple natural flavonoids could exert satisfactory treatment effects on the neuroinflammation associated with Alzheimer's disease.In this review,we describe the pathogenesis and neuroinflammatory processes of Alzheimer's disease,and summarize the effects and mechanisms of 13 natural flavonoids(apigenin,luteolin,naringenin,quercetin,morin,kaempferol,fisetin,isoquercitrin,astragalin,rutin,icariin,mangiferin,and anthocyanin)derived from plants or medicinal herbs on neuroinflammation in Alzheimer's disease.As an important resource for the development of novel compounds for the treatment of critical diseases,it is essential that we focus on the exploitation of natural products.In particular,it is vital that we investigate the effects of flavonoids on the neuroinflammation associated with Alzheimer's disease in greater detail.
基金financially supported by the National Natural Science Foundation of China(Grant Nos.32072623,31700611)。
文摘Flavonoids are critical secondary metabolites that determine the health benefits and flavor of tea,while chlorophylls are important contributors to the appearance of tea.However,transcription factors(TFs)that can integrate both chlorophyll biosynthesis and flavonoid accumulation in response to specific light signals are rarely identified.In this study,we report that the GOLDEN 2-LIKE TF pair,CsGLK1 and CsGLK2,orchestrate UV-B-induced responses in the chlorophyll biosynthesis and flavonoid accumulation of tea leaves.The absence of solar UV-B reduced the transcriptional expression of CsGLKs in the tea leaves and was highly correlated with a decrease in flavonoid levels(especially flavonol glycosides)and the expression of genes and TFs involved in chlorophyll biosynthesis and flavonoid accumulation.In vivo and in vitro molecular analyses showed that CsGLKs could be regulated by the UV-B signal mediator CsHY5,and could directly bind to the promoters of gene and TF involved in light-harvesting(CsLhcb),chlorophyll biosynthesis(CsCHLH,CsHEMA1,and CsPORA),and flavonoid accumulation(CsMYB12,CsFLSa,CsDFRa,and CsLARa),eventually leading to UV-B-induced responses in the chlorophylls and flavonoids of tea leaves.Furthermore,UV-B exposure increased the levels of total flavonoids,CsGLK1 protein,and expression of CsGLKs and target genes in the tea leaves.These results indicate that CsGLKs may modulate tea leaf characteristics by regulating chlorophyll biosynthesis and flavonoid accumulation in response to solar UV-B.As the first report on UV-B-induced changes in flavonoid and chlorophyll regulation mediated by CsGLKs,this study improves our understanding of the environmental regulations regarding tea quality and sheds new light on UV-B-induced flavonoid responses in higher plants.
基金supported by the National Natural Science Foundation of China(No.32002195)Zhejiang Provincial Leading Innovation and Entrepreneurship Team Project(No.2020R01015)+1 种基金“Leading Geese”Research and Development Plan of Zhejiang Province(No.2022C02059)Key R&D Projects of Zhejiang Province(No.2021C02013)。
文摘Background Dietary bamboo leaf flavonoids(BLFs)are rarely used in poultry production,and it is unknown whether they influence meat texture profile,perceived color,or microstructure.Results A total of 720 one-day-old Arbor Acres broilers were supplemented with a basal diet with 20 mg bacitracin/kg,50 mg BLFs/kg,or 250 mg BLFs/kg or without additions.Data showed that the dietary BLFs significantly(P<0.05)changed growth performance and the texture profile.In particular,BLFs increased birds’average daily gain and average daily feed intake,decreased the feed:gain ratio and mortality rate,improved elasticity of breast meat,enhanced the gumminess of breast and leg meat,and decreased the hardness of breast meat.Moreover,a significant(P<0.05)increase in redness(a*)and chroma(c*)of breast meat and c*and water-holding capacity of leg meat was found in BLF-supplemented broilers compared with control broilers.In addition,BLFs supplementation significantly decreased(P<0.05)theβ-sheet ratio and serum malondialdehyde and increased theβ-turn ratio of protein secondary structure,superoxide dismutase,and glutathione peroxidase of breast meat and total antioxidant capacity and catalase of serum.Based on the analysis of untargeted metabolome,BLFs treatment considerably altered 14 metabolites of the breast meat,including flavonoids,amino acids,and organic acids,as well as phenolic and aromatic compounds.Conclusions Dietary BLFs supplementation could play a beneficial role in improving meat quality and sensory color in the poultry industry by changing protein secondary structures and modulating metabolites.
基金supported by the National Natural Science Foundation of China(Grant No.:81873196)Sino-German Center for Research Promotion(Project No.:GZ1505)Chinese Scholarship Council,and Science and Technology Planning Projects of Jiaxing City(Project No.:2022AY10014).
文摘Flavonoids such as baohuoside I and icaritin are the major active compounds in Epimedii Folium(EF)and possess excellent therapeutic effects on various diseases.Encouragingly,in 2022,icaritin soft capsules were approved to reach the market for the treatment of hepatocellular carcinoma(HCC)by National Medical Products Administration(NMPA)of China.Moreover,recent studies demonstrate that icaritin can serve as immune-modulating agent to exert anti-tumor effects.Nonetheless,both production efficiency and clinical applications of epimedium flavonoids have been restrained because of their low content,poor bioavailability,and unfavorable in vivo delivery efficiency.Recently,various strategies,including enzyme engineering and nanotechnology,have been developed to increase productivity and activity,improve delivery efficiency,and enhance therapeutic effects of epimedium flavonoids.In this review,the structure-activity relationship of epimedium flavonoids is described.Then,enzymatic engineering strategies for increasing the productivity of highly active baohuoside I and icaritin are discussed.The nanomedicines for overcoming in vivo delivery barriers and improving therapeutic effects of various diseases are summarized.Finally,the challenges and an outlook on clinical translation of epimedium flavonoids are proposed.
文摘The growing interest in the potential biological activity of polyphenols and flavonoids has highlighted necessity to assess their content in fresh and dried pepper from Ivory Coast. The total polyphenol content was determined using the Folin-Ciocalteu test and the total flavonoid content was also measured spectrophotometrically using the aluminum chloride colorimetric test. The results obtained indicate the total polyphenol levels of fresh and dried peppers are higher in the samples collected in Danane (0.8 ± 0.05 mg GAE/100g) and in Azaguie (0.4 ± 0.08 mg GAE/100g). The lowest concentrations were obtained with fresh and dried pepper samples collected in N’douci (0.22 ± 0.02 mg GAE/100g) and in PK 103 (0.22 ± 0.02 mg GAE/100g). The highest content of total flavonoids was revealed in the locality of PK 103 (1.85 ± 0.62 mg EC/100g) followed by the locality of Maféré (1.37 ± 0.25 mg EC/100g) respectively for black pepper and green pepper. Then, the lowest flavonoid contents were obtained in the dried pepper of Lopou (0.57 ± 0.03 mg EC/100g) and the fresh pepper of PK 103 (0.47 ± 0.03 mg EC/100g). The results obtained highlight the importance of these black spices as promising sources of phenolic compounds and could be used in pharmaceutical treatments and in food.