Deformable catalytic material with excellent flexible structure is a new type of catalyst that has been applied in various chemical reactions,especially electrocatalytic hydrogen evolution reaction(HER).In recent year...Deformable catalytic material with excellent flexible structure is a new type of catalyst that has been applied in various chemical reactions,especially electrocatalytic hydrogen evolution reaction(HER).In recent years,deformable catalysts for HER have made great progress and would become a research hotspot.The catalytic activities of deformable catalysts could be adjustable by the strain engineering and surface reconfiguration.The surface curvature of flexible catalytic materials is closely related to the electrocatalytic HER properties.Here,firstly,we systematically summarized self-adaptive catalytic performance of deformable catalysts and various micro–nanostructures evolution in catalytic HER process.Secondly,a series of strategies to design highly active catalysts based on the mechanical flexibility of lowdimensional nanomaterials were summarized.Last but not least,we presented the challenges and prospects of the study of flexible and deformable micro–nanostructures of electrocatalysts,which would further deepen the understanding of catalytic mechanisms of deformable HER catalyst.展开更多
Wheel polygonal wear can immensely worsen wheel/rail interactions and vibration performances of the train and track,and ultimately,lead to the shortening of service life of railway components.At present,wheel/rail med...Wheel polygonal wear can immensely worsen wheel/rail interactions and vibration performances of the train and track,and ultimately,lead to the shortening of service life of railway components.At present,wheel/rail medium-or high-frequency frictional interactions are perceived as an essential reason of the high-order polygonal wear of railway wheels,which are potentially resulted by the flexible deformations of the train/track system or other external excitations.In this work,the effect of wheel/rail flexibility on polygonal wear evolution of heavy-haul locomotive wheels is explored with aid of the long-term wheel polygonal wear evolution simulations,in which different flexible modeling of the heavy-haul wheel/rail coupled system is implemented.Further,the mitigation measures for the polygonal wear of heavy-haul locomotive wheels are discussed.The results point out that the evolution of polygonal wear of heavy-haul locomotive wheels can be veritably simulated with consideration of the flexible effect of both wheelset and rails.Execution of mixed-line operation of heavy-haul trains and application of multicut wheel re-profiling can effectively reduce the development of wheel polygonal wear.This research can provide a deep-going understanding of polygonal wear evolution mechanism of heavy-haul locomotive wheels and its mitigation measures.展开更多
As interest in double perovskites is growing,especially in applications like photovoltaic devices,understanding their mechanical properties is vital for device durability.Despite extensive exploration of structure and...As interest in double perovskites is growing,especially in applications like photovoltaic devices,understanding their mechanical properties is vital for device durability.Despite extensive exploration of structure and optical properties,research on mechanical aspects is limited.This article builds a vacancyordered double perovskite model,employing first-principles calculations to analyze mechanical,bonding,electronic,and optical properties.Results show Cs_(2)Hfl_(6),Cs_(2)SnBr_(6),Cs_(2)SnI_(6),and Cs_(2)PtBr_(6)have Young's moduli below 13 GPa,indicating flexibility.Geometric parameters explain flexibility variations with the changes of B and X site composition.Bonding characteristic exploration reveals the influence of B and X site electronegativity on mechanical strength.Cs_(2)SnBr_(6)and Cs_(2)PtBr_(6)are suitable for solar cells,while Cs_(2)HfI_(6)and Cs_(2)TiCl_(6)show potential for semi-transparent solar cells.Optical property calculations highlight the high light absorption coefficients of up to 3.5×10^(5) cm^(-1)for Cs_(2)HfI_(6)and Cs_(2)TiCl_(6).Solar cell simulation shows Cs_(2)PtBr_(6)achieves 22.4%of conversion effciency.Cs_(2)ZrCl_(6)holds promise for ionizing radiation detection with its 3.68 eV bandgap and high absorption coefficient.Vacancy-ordered double perovskites offer superior flexibility,providing valuable insights for designing stable and flexible devices.This understanding enhances the development of functional devices based on these perovskites,especially for applications requiring high stability and flexibility.展开更多
Recently,semisubmersible floating offshore wind turbine technologies have received considerable attention.For the coupled simulation of semisubmersible floating offshore wind energy,the platform is usually considered ...Recently,semisubmersible floating offshore wind turbine technologies have received considerable attention.For the coupled simulation of semisubmersible floating offshore wind energy,the platform is usually considered a rigid model,which could affect the calculation accuracy of the dynamic responses.The dynamic responses of a TripleSpar floating offshore wind turbine equipped with a 10 MW offshore wind turbine are discussed herein.The simulation of a floating offshore wind turbine under regular waves,white noise waves,and combined wind-wave conditions is conducted.The effects of the tower and platform flexibility on the motion and force responses of the TripleSpar semisubmersible floating offshore wind turbine are investigated.The results show that the flexibility of the tower and platform can influence the dynamic responses of a TripleSpar semisubmersible floating offshore wind turbine.Considering the flexibility of the tower and platform,the tower and platform pitch motions markedly increased compared with the fully rigid model.Moreover,the force responses,particularly for tower base loads,are considerably influenced by the flexibility of the tower and platform.Thus,the flexibility of the tower and platform for the coupled simulation of floating offshore wind turbines must be appropriately examined.展开更多
Use of a flexible thermoelectric source is a feasible approach to realizing selfpowered wearable electronics and the Internet of Things.Inorganic thin films are promising candidates for fabricating flexible power supp...Use of a flexible thermoelectric source is a feasible approach to realizing selfpowered wearable electronics and the Internet of Things.Inorganic thin films are promising candidates for fabricating flexible power supply,but obtaining highthermoelectric‐performance thin films remains a big challenge.In the present work,a p‐type Bi_(x)Sb_(2−x)Te_(3) thin film is designed with a high figure of merit of 1.11 at 393 K and exceptional flexibility(less than 5%increase in resistance after 1000 cycles of bending at a radius of∼5 mm).The favorable comprehensive performance of the Bi_(x)Sb_(2−x)Te_(3) flexible thin film is due to its excellent crystallinity,optimized carrier concentration,and low elastic modulus,which have been verified by experiments and theoretical calculations.Further,a flexible device is fabricated using the prepared p‐type Bi_(x)Sb_(2−x)Te_(3) and n‐type Ag_(2)Se thin films.Consequently,an outstanding power density of∼1028μWcm^(−2)is achieved at a temperature difference of 25 K.This work extends a novel concept to the fabrication of highperformance flexible thin films and devices for wearable energy harvesting.展开更多
The relationship between climate and labor flexibility has been distinguished as an antecedent of performance.In this sense,the objective of this work was to explore the factorial structure of the organizational binom...The relationship between climate and labor flexibility has been distinguished as an antecedent of performance.In this sense,the objective of this work was to explore the factorial structure of the organizational binomial.A cross-sectional,psychometric,and correlational study was carried out with a sample of 100 employees from organizations in central Mexico.Respondents were selected based on their affiliation with the local chamber of commerce.The results show the prevalence of six factors related to the leadership climate,compensation,structure,logistics,contingencies,and risks.The total explained variance reached 71%,although the correlation analysis and the factorial structure indicate the inclusion of another factor that the literature identifies as entrepreneurial and innovative flexibility.展开更多
In engineering applications (Like an ocean riser), fluid flow around bluff bodies generates substantial resistance, which can jeopardize structural integrity, lifespan, and escalate resource consumption. Therefore, em...In engineering applications (Like an ocean riser), fluid flow around bluff bodies generates substantial resistance, which can jeopardize structural integrity, lifespan, and escalate resource consumption. Therefore, employing drag reduction measures becomes particularly crucial. This paper employs the immersed boundary method to investigate the impact of transversely oriented appendage plate flexibility on the drag of cylinders under different Reynolds numbers and distances. The results indicate that flexible appendage plate exerts drag reduction effects on the downstream cylinder, with this effect gradually diminishing as Reynolds numbers increase. At identical Reynolds numbers, the drag reduction effect initially increases and then decreases with distance, with the optimal drag reduction distance observed at D = 2.5. Compared to cylinders without appendage plate, the maximum drag reduction achieved is 30.551%. Addressing the drag reduction issue in cylinders holds significant importance for ensuring engineering structural integrity, enhancing engineering efficiency, and developing novel underwater towing systems.展开更多
With the rapid and wide deployment of renewable energy,the operations of the power system are facing greater challenges when dispatching flexible resources to keep power balance.The output power of renewable energy is...With the rapid and wide deployment of renewable energy,the operations of the power system are facing greater challenges when dispatching flexible resources to keep power balance.The output power of renewable energy is uncertain,and thus flexible regulation for the power balance is highly demanded.Considering the multi-timescale output characteristics of renewable energy,a flexibility evaluation method based on multi-scale morphological decomposition and a multi-timescale energy storage deployment model based on bi-level decision-making are proposed in this paper.Through the multi-timescale decomposition algorithm on the basis of mathematical morphology,the multi-timescale components are separated to determine the flexibility requirements on different timescales.Based on the obtained flexibility requirements,a multi-timescale energy resources deployment model based on bi-level optimization is established considering the economic performance and the flexibility of system operation.This optimization model can allocate corresponding flexibility resources according to the economy,flexibility and reliability requirements of the power system,and achieve the trade-off between them.Finally,case studies demonstrate the effectiveness of our model and method.展开更多
BACKGROUND Patients with chronic hepatitis B(CHB)experience various problems,including low psychological flexibility,negative emotions,and poor sleep quality.Therefore,effective nursing interventions are required to r...BACKGROUND Patients with chronic hepatitis B(CHB)experience various problems,including low psychological flexibility,negative emotions,and poor sleep quality.Therefore,effective nursing interventions are required to reduce adverse events.Acceptance and commitment therapy(ACT)combined with enabling cognitivebehavioral education(ECBE)can improve patients'psychological and sleep.Therefore,we speculate that this may also be effective in patients with CHB.AIM To investigate the effects of different intervention methods on psychological flexibility,negative emotions,and sleep quality in patients with CHB.METHODS This retrospective study examined clinical and evaluation data of 129 patients with CHB.Intervention methods were divided into a conventional group(routine nursing,n=69)and a combination group(ACT combined with ECBE,n=60).We observed changes in psychological flexibility,negative emotions,sleep quality,and self-care ability in both groups.Observation items were evaluated using the Acceptance and Action Questionnaire-2nd Edition(AAQ-II),Self-Rating Anxiety Scale(SAS),Self-Rating Depression Scale(SDS),Pittsburgh Sleep Quality Index(PSQI),and Exercise of Self-Care Agency Scale(ESCA).RESULTS Compared with the conventional group,the AAQ-II score of the combined group was lower(F_(between-group effect)=8.548;F_(time effects)=25.020;F_(interaction effects)=52.930;all P<0.001),the SAS score(t=5.445)and SDS score(t=7.076)were lower(all P<0.001),as were the PSQI dimensions(tsleep quality=4.581,tfall sleep time=2.826,tsleep time=2.436,tsleep efficiency=5.787,tsleep disorder=5.008,thypnotic drugs=3.786,tdaytime dysfunction=4.812);all P<0.05).The ESCA scores for all dimensions were higher(thealth knowledge level=6.994,t self-concept=5.902,tself-responsibility=19.820,tself-care skills=8.470;all P<0.001).CONCLUSION ACT combined with ECBE in patients with CHB can improve psychological flexibility and sleep quality,alleviate negative emotions,and improve self-care.展开更多
A generalized flexibility–based objective function utilized for structure damage identification is constructed for solving the constrained nonlinear least squares optimized problem. To begin with, the generalized fle...A generalized flexibility–based objective function utilized for structure damage identification is constructed for solving the constrained nonlinear least squares optimized problem. To begin with, the generalized flexibility matrix (GFM) proposed to solve the damage identification problem is recalled and a modal expansion method is introduced. Next, the objective function for iterative optimization process based on the GFM is formulated, and the Trust-Region algorithm is utilized to obtain the solution of the optimization problem for multiple damage cases. And then for computing the objective function gradient, the sensitivity analysis regarding design variables is derived. In addition, due to the spatial incompleteness, the influence of stiffness reduction and incomplete modal measurement data is discussed by means of two numerical examples with several damage cases. Finally, based on the computational results, it is evident that the presented approach provides good validity and reliability for the large and complicated engineering structures.展开更多
基金This work was financially supported by the National Natural Science Foundation of China(Nos.51902101 and 21875203)the Natural Science Foundation of Hunan Province(Nos.2021JJ40044 and 2023JJ50287)Natural Science Foundation of Jiangsu Province(No.BK20201381).
文摘Deformable catalytic material with excellent flexible structure is a new type of catalyst that has been applied in various chemical reactions,especially electrocatalytic hydrogen evolution reaction(HER).In recent years,deformable catalysts for HER have made great progress and would become a research hotspot.The catalytic activities of deformable catalysts could be adjustable by the strain engineering and surface reconfiguration.The surface curvature of flexible catalytic materials is closely related to the electrocatalytic HER properties.Here,firstly,we systematically summarized self-adaptive catalytic performance of deformable catalysts and various micro–nanostructures evolution in catalytic HER process.Secondly,a series of strategies to design highly active catalysts based on the mechanical flexibility of lowdimensional nanomaterials were summarized.Last but not least,we presented the challenges and prospects of the study of flexible and deformable micro–nanostructures of electrocatalysts,which would further deepen the understanding of catalytic mechanisms of deformable HER catalyst.
基金Supported by National Natural Science Foundation of China(Grant Nos.U2268210,52302474,52072249).
文摘Wheel polygonal wear can immensely worsen wheel/rail interactions and vibration performances of the train and track,and ultimately,lead to the shortening of service life of railway components.At present,wheel/rail medium-or high-frequency frictional interactions are perceived as an essential reason of the high-order polygonal wear of railway wheels,which are potentially resulted by the flexible deformations of the train/track system or other external excitations.In this work,the effect of wheel/rail flexibility on polygonal wear evolution of heavy-haul locomotive wheels is explored with aid of the long-term wheel polygonal wear evolution simulations,in which different flexible modeling of the heavy-haul wheel/rail coupled system is implemented.Further,the mitigation measures for the polygonal wear of heavy-haul locomotive wheels are discussed.The results point out that the evolution of polygonal wear of heavy-haul locomotive wheels can be veritably simulated with consideration of the flexible effect of both wheelset and rails.Execution of mixed-line operation of heavy-haul trains and application of multicut wheel re-profiling can effectively reduce the development of wheel polygonal wear.This research can provide a deep-going understanding of polygonal wear evolution mechanism of heavy-haul locomotive wheels and its mitigation measures.
基金supported by the National Natural Science Foundation of China(62305261,62305262)the Natural Science Foundation of Shaanxi Province(2024JC-YBMS-021,2024JC-YBMS-788,2023-JC-YB-065,2023-JC-QN-0693,2022JQ-652)+1 种基金the Xi’an Science and Technology Bureau of University Service Enterprise Project(23GXFW0043)the Cross disciplinary Research and Cultivation Project of Xi’an University of Architecture and Technology(2023JCPY-17)。
文摘As interest in double perovskites is growing,especially in applications like photovoltaic devices,understanding their mechanical properties is vital for device durability.Despite extensive exploration of structure and optical properties,research on mechanical aspects is limited.This article builds a vacancyordered double perovskite model,employing first-principles calculations to analyze mechanical,bonding,electronic,and optical properties.Results show Cs_(2)Hfl_(6),Cs_(2)SnBr_(6),Cs_(2)SnI_(6),and Cs_(2)PtBr_(6)have Young's moduli below 13 GPa,indicating flexibility.Geometric parameters explain flexibility variations with the changes of B and X site composition.Bonding characteristic exploration reveals the influence of B and X site electronegativity on mechanical strength.Cs_(2)SnBr_(6)and Cs_(2)PtBr_(6)are suitable for solar cells,while Cs_(2)HfI_(6)and Cs_(2)TiCl_(6)show potential for semi-transparent solar cells.Optical property calculations highlight the high light absorption coefficients of up to 3.5×10^(5) cm^(-1)for Cs_(2)HfI_(6)and Cs_(2)TiCl_(6).Solar cell simulation shows Cs_(2)PtBr_(6)achieves 22.4%of conversion effciency.Cs_(2)ZrCl_(6)holds promise for ionizing radiation detection with its 3.68 eV bandgap and high absorption coefficient.Vacancy-ordered double perovskites offer superior flexibility,providing valuable insights for designing stable and flexible devices.This understanding enhances the development of functional devices based on these perovskites,especially for applications requiring high stability and flexibility.
基金funded by the Key Technology Research and Development Program(Nos.2022YFB4201301,and 2022YFB4201304)the National Natural Science Foundation of China(Nos.52101333,52071058,51939002,and 52071301)+2 种基金the Zhejiang Provincial Natural Science Foundation of China(No.LQ21E090009)supported by the Natural Science Foundation of Liaoning Province(No.2022-KF-18-01)the special funds for Promoting High-Quality Development from the Department of Natural Resources of Guangdong Province(No.GDNRC[2020]016).
文摘Recently,semisubmersible floating offshore wind turbine technologies have received considerable attention.For the coupled simulation of semisubmersible floating offshore wind energy,the platform is usually considered a rigid model,which could affect the calculation accuracy of the dynamic responses.The dynamic responses of a TripleSpar floating offshore wind turbine equipped with a 10 MW offshore wind turbine are discussed herein.The simulation of a floating offshore wind turbine under regular waves,white noise waves,and combined wind-wave conditions is conducted.The effects of the tower and platform flexibility on the motion and force responses of the TripleSpar semisubmersible floating offshore wind turbine are investigated.The results show that the flexibility of the tower and platform can influence the dynamic responses of a TripleSpar semisubmersible floating offshore wind turbine.Considering the flexibility of the tower and platform,the tower and platform pitch motions markedly increased compared with the fully rigid model.Moreover,the force responses,particularly for tower base loads,are considerably influenced by the flexibility of the tower and platform.Thus,the flexibility of the tower and platform for the coupled simulation of floating offshore wind turbines must be appropriately examined.
基金National Natural Science Foundation of China,Grant/Award Number:62274112Guangdong Basic and Applied Basic Research Foundation,Grant/Award Number:2022A1515010929Science and Technology Plan project of Shenzhen,Grant/Award Numbers:JCYJ20220531103601003,20220810154601001。
文摘Use of a flexible thermoelectric source is a feasible approach to realizing selfpowered wearable electronics and the Internet of Things.Inorganic thin films are promising candidates for fabricating flexible power supply,but obtaining highthermoelectric‐performance thin films remains a big challenge.In the present work,a p‐type Bi_(x)Sb_(2−x)Te_(3) thin film is designed with a high figure of merit of 1.11 at 393 K and exceptional flexibility(less than 5%increase in resistance after 1000 cycles of bending at a radius of∼5 mm).The favorable comprehensive performance of the Bi_(x)Sb_(2−x)Te_(3) flexible thin film is due to its excellent crystallinity,optimized carrier concentration,and low elastic modulus,which have been verified by experiments and theoretical calculations.Further,a flexible device is fabricated using the prepared p‐type Bi_(x)Sb_(2−x)Te_(3) and n‐type Ag_(2)Se thin films.Consequently,an outstanding power density of∼1028μWcm^(−2)is achieved at a temperature difference of 25 K.This work extends a novel concept to the fabrication of highperformance flexible thin films and devices for wearable energy harvesting.
文摘The relationship between climate and labor flexibility has been distinguished as an antecedent of performance.In this sense,the objective of this work was to explore the factorial structure of the organizational binomial.A cross-sectional,psychometric,and correlational study was carried out with a sample of 100 employees from organizations in central Mexico.Respondents were selected based on their affiliation with the local chamber of commerce.The results show the prevalence of six factors related to the leadership climate,compensation,structure,logistics,contingencies,and risks.The total explained variance reached 71%,although the correlation analysis and the factorial structure indicate the inclusion of another factor that the literature identifies as entrepreneurial and innovative flexibility.
文摘In engineering applications (Like an ocean riser), fluid flow around bluff bodies generates substantial resistance, which can jeopardize structural integrity, lifespan, and escalate resource consumption. Therefore, employing drag reduction measures becomes particularly crucial. This paper employs the immersed boundary method to investigate the impact of transversely oriented appendage plate flexibility on the drag of cylinders under different Reynolds numbers and distances. The results indicate that flexible appendage plate exerts drag reduction effects on the downstream cylinder, with this effect gradually diminishing as Reynolds numbers increase. At identical Reynolds numbers, the drag reduction effect initially increases and then decreases with distance, with the optimal drag reduction distance observed at D = 2.5. Compared to cylinders without appendage plate, the maximum drag reduction achieved is 30.551%. Addressing the drag reduction issue in cylinders holds significant importance for ensuring engineering structural integrity, enhancing engineering efficiency, and developing novel underwater towing systems.
基金supported by the NationalNatural Science Foundation of China(Grant No.52107129).
文摘With the rapid and wide deployment of renewable energy,the operations of the power system are facing greater challenges when dispatching flexible resources to keep power balance.The output power of renewable energy is uncertain,and thus flexible regulation for the power balance is highly demanded.Considering the multi-timescale output characteristics of renewable energy,a flexibility evaluation method based on multi-scale morphological decomposition and a multi-timescale energy storage deployment model based on bi-level decision-making are proposed in this paper.Through the multi-timescale decomposition algorithm on the basis of mathematical morphology,the multi-timescale components are separated to determine the flexibility requirements on different timescales.Based on the obtained flexibility requirements,a multi-timescale energy resources deployment model based on bi-level optimization is established considering the economic performance and the flexibility of system operation.This optimization model can allocate corresponding flexibility resources according to the economy,flexibility and reliability requirements of the power system,and achieve the trade-off between them.Finally,case studies demonstrate the effectiveness of our model and method.
文摘BACKGROUND Patients with chronic hepatitis B(CHB)experience various problems,including low psychological flexibility,negative emotions,and poor sleep quality.Therefore,effective nursing interventions are required to reduce adverse events.Acceptance and commitment therapy(ACT)combined with enabling cognitivebehavioral education(ECBE)can improve patients'psychological and sleep.Therefore,we speculate that this may also be effective in patients with CHB.AIM To investigate the effects of different intervention methods on psychological flexibility,negative emotions,and sleep quality in patients with CHB.METHODS This retrospective study examined clinical and evaluation data of 129 patients with CHB.Intervention methods were divided into a conventional group(routine nursing,n=69)and a combination group(ACT combined with ECBE,n=60).We observed changes in psychological flexibility,negative emotions,sleep quality,and self-care ability in both groups.Observation items were evaluated using the Acceptance and Action Questionnaire-2nd Edition(AAQ-II),Self-Rating Anxiety Scale(SAS),Self-Rating Depression Scale(SDS),Pittsburgh Sleep Quality Index(PSQI),and Exercise of Self-Care Agency Scale(ESCA).RESULTS Compared with the conventional group,the AAQ-II score of the combined group was lower(F_(between-group effect)=8.548;F_(time effects)=25.020;F_(interaction effects)=52.930;all P<0.001),the SAS score(t=5.445)and SDS score(t=7.076)were lower(all P<0.001),as were the PSQI dimensions(tsleep quality=4.581,tfall sleep time=2.826,tsleep time=2.436,tsleep efficiency=5.787,tsleep disorder=5.008,thypnotic drugs=3.786,tdaytime dysfunction=4.812);all P<0.05).The ESCA scores for all dimensions were higher(thealth knowledge level=6.994,t self-concept=5.902,tself-responsibility=19.820,tself-care skills=8.470;all P<0.001).CONCLUSION ACT combined with ECBE in patients with CHB can improve psychological flexibility and sleep quality,alleviate negative emotions,and improve self-care.
文摘A generalized flexibility–based objective function utilized for structure damage identification is constructed for solving the constrained nonlinear least squares optimized problem. To begin with, the generalized flexibility matrix (GFM) proposed to solve the damage identification problem is recalled and a modal expansion method is introduced. Next, the objective function for iterative optimization process based on the GFM is formulated, and the Trust-Region algorithm is utilized to obtain the solution of the optimization problem for multiple damage cases. And then for computing the objective function gradient, the sensitivity analysis regarding design variables is derived. In addition, due to the spatial incompleteness, the influence of stiffness reduction and incomplete modal measurement data is discussed by means of two numerical examples with several damage cases. Finally, based on the computational results, it is evident that the presented approach provides good validity and reliability for the large and complicated engineering structures.