A test for the wake vortex of a flexible oscillating caudal fin is carried out with Digital Particle Image Velocimetry (DPIV), and the variation of vortex distance and the vorticity in the range of oscillating frequ...A test for the wake vortex of a flexible oscillating caudal fin is carried out with Digital Particle Image Velocimetry (DPIV), and the variation of vortex distance and the vorticity in the range of oscillating frequency from 0.704 Hz to 1.17 Hz are analyzed. It is found that with the increase of the oscillating frequency, the vortex distance decreases and the peak of the vorticity increases, When the Strouhal number is smaller than 0.49, a larger thrust component is obtained. The distribution of the velocity circulation and the vortex distance in the different spanwise section of the caudal fin are given, and then the dimension of the vortex ring is determined. The radius of the vortex ring is 79.3 mm and the average velocity circulation is 28152.9 mm2/s at the oscillating frequency of 0.835 Hz. The model of 3-D vortex ring chain of flexible oscillating caudal fin is constructed based on the information of wake vortex field. Finally, an effective analysis method is provided for establishing the relationship of oscillating parameters for the caudal fin and the wake structure and the intrinsic mechanism of efficient fish swimming is investigated.展开更多
基金supported by the National Natural Science Foundation of China(Grant No.50879031)the Key laboratory of Jiangsu Province(Grant No.CT0701)
文摘A test for the wake vortex of a flexible oscillating caudal fin is carried out with Digital Particle Image Velocimetry (DPIV), and the variation of vortex distance and the vorticity in the range of oscillating frequency from 0.704 Hz to 1.17 Hz are analyzed. It is found that with the increase of the oscillating frequency, the vortex distance decreases and the peak of the vorticity increases, When the Strouhal number is smaller than 0.49, a larger thrust component is obtained. The distribution of the velocity circulation and the vortex distance in the different spanwise section of the caudal fin are given, and then the dimension of the vortex ring is determined. The radius of the vortex ring is 79.3 mm and the average velocity circulation is 28152.9 mm2/s at the oscillating frequency of 0.835 Hz. The model of 3-D vortex ring chain of flexible oscillating caudal fin is constructed based on the information of wake vortex field. Finally, an effective analysis method is provided for establishing the relationship of oscillating parameters for the caudal fin and the wake structure and the intrinsic mechanism of efficient fish swimming is investigated.