Copper nanowires (CuNWs) are becoming an indispensable item for next- generation transparent optical devices due to their excellent conductivity and transparency. In this work, ultrathin semicircle-shaped copper nan...Copper nanowires (CuNWs) are becoming an indispensable item for next- generation transparent optical devices due to their excellent conductivity and transparency. In this work, ultrathin semicircle-shaped copper nanowires (SCuNWs) with a diameter of - 15 nm and a length of - 30 μm (aspect ratio of -2,000) were synthesized in ethanol solution. The mechanism and factors that affect the morphology and dispersity of the SCuNWs were investigated. The prepared SCuNWs were coated on polyethylene terephthalate (PET) or polyd- imethylsiloxane (PDMS) substrate to fabricate flexible transparent conductors (FTCs). The fabricated FTCs exhibited excellent optoelectrical performance and low haze. In addition, the fabricated FTCs showed high mechanical stability during stretching and bending, indicating their great potential in flexible optical devices.展开更多
Integrating the topology design and printing method offers a promising methodology to realize large stretchability for interconnects.Herein,eco-friendly and waterbased Ag nanowires(NWs)inks were formulated and used fo...Integrating the topology design and printing method offers a promising methodology to realize large stretchability for interconnects.Herein,eco-friendly and waterbased Ag nanowires(NWs)inks were formulated and used for screen-printing highly stretchable and flexible interconnects on a large area(more than 335 mm x 175 mm).The stretchability of the interconnects was realized by introducing kirigami topology structures.The topology designed models were established to simulate the influence of kirigami patterns on wire compliance and to estimate the maximum stretchability via finite element analysis(FEA).The mechanic mechanism results demonstrate that an increase of the wave numbers results in larger stretchability,and the rectangular type of wave shows better stretchability than the zigzag and sine structures.Comparatively,the electrical and mechanical properties of the interconnects were measured and analyzed,and the experimental results were consistent with FEA.The electric conductivity of the interconnects is stable at^10,427 S cm-1 even after 1000 cycles of 15.83 mm radius bending,280%stretching and 200%twisting-stretching deformation,demonstrating outstanding mechanical reliability of the interconnects.The topology designed interconnects have been applied in stretchable flexible light-emitting diode,indicating their broad application prospects in next-generation stretchable electronics.展开更多
基金This work was supported by the National Natural Science Fund for Distinguished Young Scholars (No. 21425417), the National Natural Science Foundation of China (Nos. 21603156 and 21704071), Jiangsu Province Science Foundation for Youths (Nos. BK20170331 and BK20170332) and the Project Funded by the Priority Academic Program Development of Jiangsu Higher Education Institutions.
文摘Copper nanowires (CuNWs) are becoming an indispensable item for next- generation transparent optical devices due to their excellent conductivity and transparency. In this work, ultrathin semicircle-shaped copper nanowires (SCuNWs) with a diameter of - 15 nm and a length of - 30 μm (aspect ratio of -2,000) were synthesized in ethanol solution. The mechanism and factors that affect the morphology and dispersity of the SCuNWs were investigated. The prepared SCuNWs were coated on polyethylene terephthalate (PET) or polyd- imethylsiloxane (PDMS) substrate to fabricate flexible transparent conductors (FTCs). The fabricated FTCs exhibited excellent optoelectrical performance and low haze. In addition, the fabricated FTCs showed high mechanical stability during stretching and bending, indicating their great potential in flexible optical devices.
基金supported by the National Natural Science Foundation of China(51471121)the Basic Research Plan Program of Shenzhen City(JCYJ20170303170426117)+2 种基金the Natural Science Foundation of Jiangsu Province(BK20160383)the Fundamental Research Funds for the Central Universities(2042018kf203)Wuhan University
文摘Integrating the topology design and printing method offers a promising methodology to realize large stretchability for interconnects.Herein,eco-friendly and waterbased Ag nanowires(NWs)inks were formulated and used for screen-printing highly stretchable and flexible interconnects on a large area(more than 335 mm x 175 mm).The stretchability of the interconnects was realized by introducing kirigami topology structures.The topology designed models were established to simulate the influence of kirigami patterns on wire compliance and to estimate the maximum stretchability via finite element analysis(FEA).The mechanic mechanism results demonstrate that an increase of the wave numbers results in larger stretchability,and the rectangular type of wave shows better stretchability than the zigzag and sine structures.Comparatively,the electrical and mechanical properties of the interconnects were measured and analyzed,and the experimental results were consistent with FEA.The electric conductivity of the interconnects is stable at^10,427 S cm-1 even after 1000 cycles of 15.83 mm radius bending,280%stretching and 200%twisting-stretching deformation,demonstrating outstanding mechanical reliability of the interconnects.The topology designed interconnects have been applied in stretchable flexible light-emitting diode,indicating their broad application prospects in next-generation stretchable electronics.