High-performance ion-conducting hydrogels(ICHs)are vital for developing flexible electronic devices.However,the robustness and ion-conducting behavior of ICHs deteriorate at extreme tempera-tures,hampering their use i...High-performance ion-conducting hydrogels(ICHs)are vital for developing flexible electronic devices.However,the robustness and ion-conducting behavior of ICHs deteriorate at extreme tempera-tures,hampering their use in soft electronics.To resolve these issues,a method involving freeze–thawing and ionizing radiation technology is reported herein for synthesizing a novel double-network(DN)ICH based on a poly(ionic liquid)/MXene/poly(vinyl alcohol)(PMP DN ICH)system.The well-designed ICH exhibits outstanding ionic conductivity(63.89 mS cm^(-1) at 25℃),excellent temperature resistance(-60–80℃),prolonged stability(30 d at ambient temperature),high oxidation resist-ance,remarkable antibacterial activity,decent mechanical performance,and adhesion.Additionally,the ICH performs effectively in a flexible wireless strain sensor,thermal sensor,all-solid-state supercapacitor,and single-electrode triboelectric nanogenerator,thereby highlighting its viability in constructing soft electronic devices.The highly integrated gel structure endows these flexible electronic devices with stable,reliable signal output performance.In particular,the all-solid-state supercapacitor containing the PMP DN ICH electrolyte exhibits a high areal specific capacitance of 253.38 mF cm^(-2)(current density,1 mA cm^(-2))and excellent environmental adaptability.This study paves the way for the design and fabrication of high-performance mul-tifunctional/flexible ICHs for wearable sensing,energy-storage,and energy-harvesting applications.展开更多
Electrochromic technology has gained significant attention in various fields such as displays,smart windows,biomedical monitoring,military camouflage,human-machine interaction,and electronic skin due to its ability to...Electrochromic technology has gained significant attention in various fields such as displays,smart windows,biomedical monitoring,military camouflage,human-machine interaction,and electronic skin due to its ability to provide reversible and fast color changes under applied voltage.With the rapid development and increasing demand for flexible electronics,flexible electrochromic devices(FECDs)that offer smarter and more controllable light modulation hold great promise for practical applications.The electrochromic material(ECM)undergoing color changes during the electrochemical reactions is one of the key components in electrochromic devices.Among the ECMs,viologens,a family of organic small molecules with 1,1'-disubstituted-4,4'-dipyridinium salts,have garnered extensive research interest,due to their well-reversible redox reactions,excellent electron acceptance ability,and the ability to produce multiple colors.Notably,viologen-based FECDs demonstrate color changes in the liquid or semisolid electrolyte layer,eliminating the need for two solid electrodes and thus simplifying the device structure.Consequently,viologens offer significant potential for the development of FECDs with high optical contrast,fast response speed,and excellent stability.This review aims to provide a comprehensive overview of the progress and perspectives of viologen-based FECDs.It begins by summarizing the typical structure and recent exciting developments in viologen-based FECDs,along with their advantages and disadvantages.Furthermore,the review discusses recent advancements in FECDs with additional functionalities such as sensing,photochromism,and energy storage.Finally,the remaining challenges and potential research directions for the future of viologen-based FECDs are addressed.展开更多
Cardiovascular diseases(CVDs)are one of the most serious diseases threatening human health in the world.Therefore,effective monitoring and treatment of CVDs are urgently needed.Compared with traditional rigid devices,...Cardiovascular diseases(CVDs)are one of the most serious diseases threatening human health in the world.Therefore,effective monitoring and treatment of CVDs are urgently needed.Compared with traditional rigid devices,nanomaterials based flexible devices open up new opportunities for further development beneficial from the unique properties of nanomaterials which contribute to excellent performance to better prevent and treat CVDs.This review summarizes recent advances of nanomaterials based flexible devices for the monitoring and treatment of CVDs.First,we review the outstanding characteristics of nanomaterials.Next,we introduce flexible devices based on nanomaterials for practical use in CVDs including in vivo,ex vivo,and in vitro methods.At last,we make a conclusion and discuss the further development needed for nanomaterials and monitoring and treatment devices to better care CVDs.展开更多
To prevent and mitigate environmental degradation,high-performance and cost-effective electrochemical flexible energy storage systems need to be urgently developed.This demand has led to an increase in research on ele...To prevent and mitigate environmental degradation,high-performance and cost-effective electrochemical flexible energy storage systems need to be urgently developed.This demand has led to an increase in research on electrode materials for high-capacity flexible supercapacitors and secondary batteries,which have greatly aided the development of contemporary digital communications and electric vehicles.The use of layered double hydroxides(LDHs)as electrode materials has shown productive results over the last decade,owing to their easy production,versatile composition,low cost,and excellent physicochemical features.This review highlights the distinctive 2D sheet-like structures and electrochemical characteristics of LDH materials,as well as current developments in their fabrication strategies for expanding the application scope of LDHs as electrode materials for flexible supercapacitors and alkali metal(Li,Na,K)ion batteries.展开更多
Electrochromic materials are capable of reversibly switching their colors or optical properties through redox reactions under applied voltages,which have shown great potential applications including smart windows,none...Electrochromic materials are capable of reversibly switching their colors or optical properties through redox reactions under applied voltages,which have shown great potential applications including smart windows,nonemissive displays,optical filters,among others.Although the current rigid electrochromic devices have shown emerging interest and developed rapidly,many applications(e.g.,wearable/deformable optoelectronics)are blocked due to their inflexible features.Herein,the adaption of rigid electrochromic devices to flexible ones is of particular interest for the new era of smart optoelectronics.In this review,the current state-of-the-art achievements of flexible electrochromic devices(FECDs)are highlighted,along with their design strategies and the choice of electrochromic materials.The recent research progress of FECDs is reviewed in detail,and the challenges and corresponding solutions for real-world applications of FECDs are discussed.Furthermore,we summarize the basic fabrication strategies of FECDs and their potential applications.In addition,the development trend,the perspectives,and the outlook of FECDs are discussed at the end of this Review,which may provide recommendations and potential directions to advance the practical applications of FECDs.展开更多
Recent advances in electronic and photonic devices, such as artificial skin, wearable systems, organic and inorganic light-emitting diodes, have gained consider- able commercial and scientific interest in the academe ...Recent advances in electronic and photonic devices, such as artificial skin, wearable systems, organic and inorganic light-emitting diodes, have gained consider- able commercial and scientific interest in the academe and in industries. However, low-cost and high-throughput nano-manufacturing is difficult to realize with the use of traditional photolithographic processes. In this review, we summarize the status and the limitations of current nano- patterning techniques for scalable and flexible functional devices in terms of working principle, resolution, and processing speed. Finally, several remaining unsolved problems in nano-manufacturing are discussed, and future research directions are highlighted.展开更多
Flexible devices, such as flexible electronic devices and flexible energy storage devices, have attracted a significant amount of attention in recent years for their potential applications in modern human lives. The d...Flexible devices, such as flexible electronic devices and flexible energy storage devices, have attracted a significant amount of attention in recent years for their potential applications in modern human lives. The development of flexible devices is moving forward rapidly, as the innovation of methods and manufacturing processes has greatly encouraged the research of flexible devices. This review focuses on advanced materials, architecture designs and abundant applications of flexible devices, and discusses the problems and challenges in current situations of flexible devices. We summarize the discovery of novel materials and the design of new architectures for improving the performance of flexible devices. Finally, we introduce the applications of flexible devices as key components in real life.展开更多
With the extensive use of electronic communication technology in integrated circuit systems and wearable devices, electromagnetic interference(EMI) has increased dramatically. The shortcomings of conventional rigid EM...With the extensive use of electronic communication technology in integrated circuit systems and wearable devices, electromagnetic interference(EMI) has increased dramatically. The shortcomings of conventional rigid EMI shielding materials include high brittleness, poor comfort, and unsuitability for conforming and deformable applications. Hitherto, flexible(particularly elastic) nanocomposites have attracted enormous interest due to their excellent deformability. However, the current flexible shielding nanocomposites present low mechanical stability and resilience, relatively poor EMI shielding performance, and limited multifunctionality. Herein, the advances in low-dimensional EMI shielding nanomaterials-based elastomers are outlined and a selection of the most remarkable examples is discussed. And the corresponding modification strategies and deformability performance are summarized. Finally, expectations for this quickly increasing sector are discussed, as well as future challenges.展开更多
Nanocomposite dielectrics show great promising application in developing next generation wearable all-solidstate cooling devices owing to the possessed advantages of high cooling efficiency, light-weight and small vol...Nanocomposite dielectrics show great promising application in developing next generation wearable all-solidstate cooling devices owing to the possessed advantages of high cooling efficiency, light-weight and small volume without the induced greenhouse effect or serious harm to ozone layer in the exploited refrigerants. However, low electrocaloric strength in nanocomposite dielectric is severely restricting its wide-spread application because of high applied operating voltage to improve electrocaloric effect. After addressing the chosen optimized ferroelectric ceramic and ferroelectric polymer matrix in conjunction with the analysis of crucial parameters, recent progress of electrocaloric effect(ECE) in polymer nanocomposites has been considerably reviewed. Subsequently, prior to proposing the conceptual design and devices/systems in electrocaloric nanocomposites, the existing developed devices/systems are reviewed. Finally, conclusions and prospects are conducted, including the aspects of materials chosen, structural design and key issues to be considered in improving electrocaloric effect of polymer nanocomposite dielectrics for flexible solidstate cooling devices.展开更多
The booming developments in portable and wearable electronics promote the design of flexible energy storage systems. Flexible supercapacitors and batteries as promising energy storage devices have attracted tremendous...The booming developments in portable and wearable electronics promote the design of flexible energy storage systems. Flexible supercapacitors and batteries as promising energy storage devices have attracted tremendous attention. As the key component of both supercapacitors and batteries, electrode materials with excellent flexibility should be considered to match with highly flexible energy storage devices. Owing to large surface area, good thermal and chemical stability, high conductivity and mechanical flexibility,graphene-based materials have been widely employed to serve as promising electrodes of flexible energy storage devices. Considerable efforts have been devoted to the fabrication of flexible graphene-based electrodes through a variety of strategies. Moreover, different configurations of energy storage devices based on these active materials are designed. This review highlights flexible graphene-based two-dimensional film and one-dimensional fiber supercapacitors and various batteries including lithium-ion, lithium–sulfur and other batteries. The challenges and promising perspectives of the graphene-based materials for flexible energy storage devices are also discussed.展开更多
Flexible and stretchable transparent electrodes are widely used in smart display,energy,wearable devices and other fields.Due to the limitations of flexibility and stretchability of indium tin oxide electrodes,alterna...Flexible and stretchable transparent electrodes are widely used in smart display,energy,wearable devices and other fields.Due to the limitations of flexibility and stretchability of indium tin oxide electrodes,alternative electrodes have appeared,such as metal films,metal nanowires,and conductive meshes.However,few of the above electrodes can simultaneously have excellent flexibility,stretchability,and optoelectronic properties.Nanofiber(NF),a continuous ultra-long one-dimensional conductive material,is considered to be one of the ideal materials for high-performance transparent electrodes with excellent properties due to its unique structure.This paper summarizes the important research progress of NF flexible transparent electrodes(FTEs)in recent years from the aspects of NF electrode materials,preparation technology and application.First,the unique advantages and limitations of various NF materials are systematically discussed.Then,we summarize the preparation technology of various advanced NF FTEs,and point out the future development trend.We also discuss the application of NFs in solar cells,supercapacitors,electric heating equipments,sensors,etc,and analyze its development potential in flexible electronic equipment,as well as problems that need to be solved.Finally,the challenges and future development trends are proposed in the wide application of NF FTEs in the field of flexible optoelectronics.展开更多
For the purpose of developing flexible organic photovoltaic devices, we have fabricated two flexible devices using 5-formyl- 2,2′:5′,2″:5″,2′″-quaterthiophene (4T-CHO), 5-formyl-2,2′:5′, 2″:5″,2′″:...For the purpose of developing flexible organic photovoltaic devices, we have fabricated two flexible devices using 5-formyl- 2,2′:5′,2″:5″,2′″-quaterthiophene (4T-CHO), 5-formyl-2,2′:5′, 2″:5″,2′″:5′″,2″″-quinquethiophene (5T-CHO) and 3,4,9,10-perylenetertracarboxylic dianhydride (PTCDA). The PET-ITO/4T-CHO/PTCDA/A1 device has an open circuit voltage (Voc) of 1.56 V, photoelectric conversion efficiency of 0.77%. The PET-ITO/5T-CHO/PTCDA/A1 device has a Voc of 1.70 V, photoelectric conversion efficiency of 0.84%. The two flexible devices have high Voc (1.56 and 1.70 V). It is possible that intermolecular hydrogen bonding between -CHO group of nT-CHO and carboxylic dianhydride of PTCDA contributes to enhancing the efficiency by promoting interfacial electron transfer and eliminating the subconducting band trap sites.展开更多
In plane micro-supercapacitors that are miniaturized energy storage components have attracted significant attention due to their high power densities for various ubiquitous and sustainable device systems as well as th...In plane micro-supercapacitors that are miniaturized energy storage components have attracted significant attention due to their high power densities for various ubiquitous and sustainable device systems as well as their facile integration on various flexible/wearable platform.To implement the micro-supercapacitors in various practical applications that can accompany solid state or gel electrolyte and flexible substrates,ions must be readily transported to electrodes for achieving high power densities.Herein,we show large enhancement in electrochemical properties of flexible,inplane micro-supercapacitor using sharp-edged interdigitated electrode design,which was simply fabricated through direct laser scribing method.The sharp-edged electrodes allowed strong electric field to be induced at the corners of the electrode fingers which led to the greater accumulation of ions near the surface of electrode,significantly enhancing the energy storage performance of micro-supercapacitors.The electric field-enhanced in-plane micro-supercapacitor showed the volumetric energy density of 1.52 Wh L^(−1)and the excellent cyclability with capacitive retention of 95.4%after 20000 cycles.We further showed various practicability of our sharp-edged design in micro-supercapacitors by showing circuit applicability,mechanical stability,and air stability.These results present an important pathway for designing electrodes in various energy storage devices.展开更多
With the merits of non-contact,highly efficient,and parallel computing,optoelectronic synaptic devices combining sensing and memory in a single unit are promising for constructing neuromorphic computing and artificial...With the merits of non-contact,highly efficient,and parallel computing,optoelectronic synaptic devices combining sensing and memory in a single unit are promising for constructing neuromorphic computing and artificial visual chip.Based on this,a N:ZnO/MoS_(2)-heterostructured flexible optoelectronic synaptic device is developed in this work,and its capability in mimicking the synaptic behaviors is systemically investigated under the electrical and light signals.Versatile synaptic functions,including synaptic plasticity,long-term/short-term memory,and learning-forgetting-relearning property,have been achieved in this synaptic device.Further,an artificial visual memory system integrating sense and memory is emulated with the device array,and the visual memory behavior can be regulated by varying the light parameters.Moreover,the optoelectronic co-modulation behavior is verified by applying mixed electric and light signals to the array.In detail,a transient recovery property is discovered when the electric signals are applied in synergy during the decay of the light response,of which property facilitates the development of robust artificial visual systems.Furthermore,by superimposing electrical signals during the light response process,a differentiated response of the array is achieved,which can be used as a proof of concept for the color perception of the artificial visual system.展开更多
By means of inkjet printing technique, flexible and all-solid-state micro-supercapacitors(MSCs) were fabricated with carbon-based hybrid ink composed of graphene oxide(GO,98.0vol.%) ink and commercial pen ink(2.0vol.%...By means of inkjet printing technique, flexible and all-solid-state micro-supercapacitors(MSCs) were fabricated with carbon-based hybrid ink composed of graphene oxide(GO,98.0vol.%) ink and commercial pen ink(2.0vol.%). A small amount of commercial pen ink was added to effectively reduce the agglomeration of theGO sheets during solvent evaporation and the following reduction processes in which the presence of graphite carbon nanoparticles served as nano-spacer to separate GO sheets. The printed device fabricated using the hybrid ink,combined with the binder-free microelectrodes and interdigital microelectrode configuration, exhibits nearly 780%enhancement in areal capacitance compared with that of pure GO ink. It also shows excellent flexibility and cycling stability with nearly 100% retention of the areal capacitance after 10,000 cycles. The all-solid-state device can be optionally connected in series or in parallel to meet the voltage and capacity requirements for a given application.This work demonstrates a promising future of the carbonbased hybrid ink for directly large-scale inkjet printing MSCs for disposable energy storage devices.展开更多
The ever-growing market of wearable electronic devices has greatly stimulated the rapid development of flexible Zn-ion batteries(ZIBs).Manganese oxides are one of the most commonly used hosts for zinc ion accommodatio...The ever-growing market of wearable electronic devices has greatly stimulated the rapid development of flexible Zn-ion batteries(ZIBs).Manganese oxides are one of the most commonly used hosts for zinc ion accommodation and thus receive particular research interest for high-performance flexible ZIB constructions.In this review,a comprehensive summary of the recent development of flexible ZIBs with manganese oxides as cathode materials is presented.Apart from the brief introduction of flexible electronic devices and ZIBs,the charge storage mechanisms and crystal structures of various manganese oxides are summarized.Modifications of the cathode materials in terms of morphology,conductivity,structures,and flexibilities are illustrated in detail,together with the demonstration of structure-performance relationships and applications in flexible ZIBs.Finally,limitations to be overcome are indicated and the future work directions are proposed.展开更多
Recently,electronic skins and fl exible wearable devices have been developed for widespread applications in medical monitoring,artifi cial intelligence,human–machine interaction,and artifi cial prosthetics.Flexible p...Recently,electronic skins and fl exible wearable devices have been developed for widespread applications in medical monitoring,artifi cial intelligence,human–machine interaction,and artifi cial prosthetics.Flexible proximity sensors can accurately perceive external objects without contact,introducing a new way to achieve an ultrasensitive perception of objects.This article reviews the progress of fl exible capacitive proximity sensors,fl exible triboelectric proximity sensors,and fl exible gate-enhanced proximity sensors,focusing on their applications in the electronic skin fi eld.Herein,their working mechanism,materials,preparation methods,and research progress are discussed in detail.Finally,we summarize the future challenges in developing fl exible proximity sensors.展开更多
Polymer ionogel(PIG)is a new type of flexible,stretchable,and ion-conductive material,which generally consists of two components(polymer matrix materials and ionic liquids/deep eutectic solvents).More and more attenti...Polymer ionogel(PIG)is a new type of flexible,stretchable,and ion-conductive material,which generally consists of two components(polymer matrix materials and ionic liquids/deep eutectic solvents).More and more attention has been received owing to its excellent properties,such as nonvolatility,good ionic conductivity,excellent thermal stability,high electrochemical stability,and transparency.In this review,the latest research and developments of PIGs are comprehensively reviewed according to different polymer matrices.Particularly,the development of novel structural designs,preparation methods,basic properties,and their advantages are respectively summarized.Furthermore,the typical applications of PIGs in flexible ionic skin,flexible electrochromic devices,flexible actuators,and flexible power supplies are reviewed.The novel working mechanism,device structure design strategies,and the unique functions of the PIG-based flexible ionic devices are briefly introduced.Finally,the perspectives on the current challenges and future directions of PIGs and their application are discussed.展开更多
As a combination of fiber optics and nanotechnology,optical micro/nanofiber(MNF)is considered as an important multifunctional building block for fabricating various miniaturized photonic devices.With the rapid progres...As a combination of fiber optics and nanotechnology,optical micro/nanofiber(MNF)is considered as an important multifunctional building block for fabricating various miniaturized photonic devices.With the rapid progress in flexible optoelectronics,MNF has been emerging as a promising candidate for assembling tactile sensors and soft actuators owing to its unique optical and mechanical properties.This review discusses the advances in MNF enabled tactile sensors and soft actuators,specifically,focusing on the latest research results over the past 5 years and the applications in health monitoring,human-machine interfaces,and robotics.Future prospects and challenges in developing flexible MNF devices are also presented.展开更多
The design of power supply systems for wearable applications requires both flexibility and durability.Thermoelectrochemical cells(TECs)with large Seebeck coefficient can efficiently convert lowgrade heat into electric...The design of power supply systems for wearable applications requires both flexibility and durability.Thermoelectrochemical cells(TECs)with large Seebeck coefficient can efficiently convert lowgrade heat into electricity,thus having attracted considerable attention in recent years.Utilizing hydrogel electrolyte essentially addresses the electrolyte leakage and complicated packaging issues existing in conventional liquid-based TECs,which well satisfies the need for flexibility.Whereas,the concern of mechanical robustness to ensure stable energy output remains yet to be addressed.Herein,a flexible quasisolid-state TEC is proposed based on the rational design of a hydrogel electrolyte,of which the thermogalvanic effect and mechanical robustness are simultaneously regulated via the multivalent ions of a redox couple.The introduced redox ions not only endow the hydrogel with excellent heat-to-electricity conversion capability,but also act as ionic crosslinks to afford a dual-crosslinked structure,resulting in reversible bonds for effective energy dissipation.The optimized TEC exhibits a high Seebeck coefficient of 1.43 mV K−1 and a significantly improved fracture toughness of 3555 J m^(−2),thereby can maintain a stable thermoelectrochemical performance against various harsh mechanical stimuli.This study reveals the high potential of the quasi-solid-state TEC as a flexible and durable energy supply system for wearable applications.展开更多
基金the National Natural Science Foundation of China(11875138,52077095).
文摘High-performance ion-conducting hydrogels(ICHs)are vital for developing flexible electronic devices.However,the robustness and ion-conducting behavior of ICHs deteriorate at extreme tempera-tures,hampering their use in soft electronics.To resolve these issues,a method involving freeze–thawing and ionizing radiation technology is reported herein for synthesizing a novel double-network(DN)ICH based on a poly(ionic liquid)/MXene/poly(vinyl alcohol)(PMP DN ICH)system.The well-designed ICH exhibits outstanding ionic conductivity(63.89 mS cm^(-1) at 25℃),excellent temperature resistance(-60–80℃),prolonged stability(30 d at ambient temperature),high oxidation resist-ance,remarkable antibacterial activity,decent mechanical performance,and adhesion.Additionally,the ICH performs effectively in a flexible wireless strain sensor,thermal sensor,all-solid-state supercapacitor,and single-electrode triboelectric nanogenerator,thereby highlighting its viability in constructing soft electronic devices.The highly integrated gel structure endows these flexible electronic devices with stable,reliable signal output performance.In particular,the all-solid-state supercapacitor containing the PMP DN ICH electrolyte exhibits a high areal specific capacitance of 253.38 mF cm^(-2)(current density,1 mA cm^(-2))and excellent environmental adaptability.This study paves the way for the design and fabrication of high-performance mul-tifunctional/flexible ICHs for wearable sensing,energy-storage,and energy-harvesting applications.
基金financial support from the National Natural Science Foundation of China(22105106)the Natural Science Foundation of Jiangsu Province of China(BK20210603)+1 种基金the Nanjing Science and Technology Innovation Project for overseas Students(NJKCZYZZ2022–05)the Start-up Funding from NUPTSF(NY221003)。
文摘Electrochromic technology has gained significant attention in various fields such as displays,smart windows,biomedical monitoring,military camouflage,human-machine interaction,and electronic skin due to its ability to provide reversible and fast color changes under applied voltage.With the rapid development and increasing demand for flexible electronics,flexible electrochromic devices(FECDs)that offer smarter and more controllable light modulation hold great promise for practical applications.The electrochromic material(ECM)undergoing color changes during the electrochemical reactions is one of the key components in electrochromic devices.Among the ECMs,viologens,a family of organic small molecules with 1,1'-disubstituted-4,4'-dipyridinium salts,have garnered extensive research interest,due to their well-reversible redox reactions,excellent electron acceptance ability,and the ability to produce multiple colors.Notably,viologen-based FECDs demonstrate color changes in the liquid or semisolid electrolyte layer,eliminating the need for two solid electrodes and thus simplifying the device structure.Consequently,viologens offer significant potential for the development of FECDs with high optical contrast,fast response speed,and excellent stability.This review aims to provide a comprehensive overview of the progress and perspectives of viologen-based FECDs.It begins by summarizing the typical structure and recent exciting developments in viologen-based FECDs,along with their advantages and disadvantages.Furthermore,the review discusses recent advancements in FECDs with additional functionalities such as sensing,photochromism,and energy storage.Finally,the remaining challenges and potential research directions for the future of viologen-based FECDs are addressed.
基金supported by the National Key R&D Program of China(No.2018YFA0108100)the National Natural Science Foundation of China(No.62104009).
文摘Cardiovascular diseases(CVDs)are one of the most serious diseases threatening human health in the world.Therefore,effective monitoring and treatment of CVDs are urgently needed.Compared with traditional rigid devices,nanomaterials based flexible devices open up new opportunities for further development beneficial from the unique properties of nanomaterials which contribute to excellent performance to better prevent and treat CVDs.This review summarizes recent advances of nanomaterials based flexible devices for the monitoring and treatment of CVDs.First,we review the outstanding characteristics of nanomaterials.Next,we introduce flexible devices based on nanomaterials for practical use in CVDs including in vivo,ex vivo,and in vitro methods.At last,we make a conclusion and discuss the further development needed for nanomaterials and monitoring and treatment devices to better care CVDs.
基金the National Natural Science Foundation of China(NSFC Grant No.62174152).
文摘To prevent and mitigate environmental degradation,high-performance and cost-effective electrochemical flexible energy storage systems need to be urgently developed.This demand has led to an increase in research on electrode materials for high-capacity flexible supercapacitors and secondary batteries,which have greatly aided the development of contemporary digital communications and electric vehicles.The use of layered double hydroxides(LDHs)as electrode materials has shown productive results over the last decade,owing to their easy production,versatile composition,low cost,and excellent physicochemical features.This review highlights the distinctive 2D sheet-like structures and electrochemical characteristics of LDH materials,as well as current developments in their fabrication strategies for expanding the application scope of LDHs as electrode materials for flexible supercapacitors and alkali metal(Li,Na,K)ion batteries.
基金the support from the “Qilu Young Scholar” program (62460082163097) of Shandong Universitythe National Natural Science Foundation of China (62105185)+1 种基金Shandong Excellent Young Scientists Fund Program (Overseas) (2022HWYQ-021)Guangdong Basic and Applied Basic Research Foundation (2022A1515011516)
文摘Electrochromic materials are capable of reversibly switching their colors or optical properties through redox reactions under applied voltages,which have shown great potential applications including smart windows,nonemissive displays,optical filters,among others.Although the current rigid electrochromic devices have shown emerging interest and developed rapidly,many applications(e.g.,wearable/deformable optoelectronics)are blocked due to their inflexible features.Herein,the adaption of rigid electrochromic devices to flexible ones is of particular interest for the new era of smart optoelectronics.In this review,the current state-of-the-art achievements of flexible electrochromic devices(FECDs)are highlighted,along with their design strategies and the choice of electrochromic materials.The recent research progress of FECDs is reviewed in detail,and the challenges and corresponding solutions for real-world applications of FECDs are discussed.Furthermore,we summarize the basic fabrication strategies of FECDs and their potential applications.In addition,the development trend,the perspectives,and the outlook of FECDs are discussed at the end of this Review,which may provide recommendations and potential directions to advance the practical applications of FECDs.
基金Acknowledgements The authors acknowledge financial support given by the National Natural Science Foundation of China (Grant Nos. 91323303, 61401292, 61405133, 61505131, and 61575135), the Jiangsu Science andTechnology Department (Grant Nos. BK20140350, BK20140348, and BK20150309), the Specialized Research Fund for the Doctoral Program of Higher Education (Grant No. 20133201120027), the China Postdoctoral Science Foundation (Grant No. 2015M571816), and the project of the Priority Academic Program Development (PAPD) of Jiangsu Higher Education Institutions.
文摘Recent advances in electronic and photonic devices, such as artificial skin, wearable systems, organic and inorganic light-emitting diodes, have gained consider- able commercial and scientific interest in the academe and in industries. However, low-cost and high-throughput nano-manufacturing is difficult to realize with the use of traditional photolithographic processes. In this review, we summarize the status and the limitations of current nano- patterning techniques for scalable and flexible functional devices in terms of working principle, resolution, and processing speed. Finally, several remaining unsolved problems in nano-manufacturing are discussed, and future research directions are highlighted.
基金supported by the National Key R&D Program of China(Nos.2017YFA0208200,2016YFB0700600,2015CB659300)the National Natural Science Foundation of China(Nos.21403105,21573108)the Fundamental Research Funds for the Central Universities(No.020514380107)
文摘Flexible devices, such as flexible electronic devices and flexible energy storage devices, have attracted a significant amount of attention in recent years for their potential applications in modern human lives. The development of flexible devices is moving forward rapidly, as the innovation of methods and manufacturing processes has greatly encouraged the research of flexible devices. This review focuses on advanced materials, architecture designs and abundant applications of flexible devices, and discusses the problems and challenges in current situations of flexible devices. We summarize the discovery of novel materials and the design of new architectures for improving the performance of flexible devices. Finally, we introduce the applications of flexible devices as key components in real life.
基金financially supported by the National Natural Science Foundation of China (52192610, 62274127)National Key Research and Development Program of China (Grant 2021YFA0715600, 2018YFB2202900)Foundation of Zhejiang Provincial Key Lab of Solar Energy Utilization & Energy Saving Technology (ZJS-OP-2020-11)。
文摘With the extensive use of electronic communication technology in integrated circuit systems and wearable devices, electromagnetic interference(EMI) has increased dramatically. The shortcomings of conventional rigid EMI shielding materials include high brittleness, poor comfort, and unsuitability for conforming and deformable applications. Hitherto, flexible(particularly elastic) nanocomposites have attracted enormous interest due to their excellent deformability. However, the current flexible shielding nanocomposites present low mechanical stability and resilience, relatively poor EMI shielding performance, and limited multifunctionality. Herein, the advances in low-dimensional EMI shielding nanomaterials-based elastomers are outlined and a selection of the most remarkable examples is discussed. And the corresponding modification strategies and deformability performance are summarized. Finally, expectations for this quickly increasing sector are discussed, as well as future challenges.
基金Project(202045007) supported by the Start-up Funds for Outstanding Talents in Central South University,China。
文摘Nanocomposite dielectrics show great promising application in developing next generation wearable all-solidstate cooling devices owing to the possessed advantages of high cooling efficiency, light-weight and small volume without the induced greenhouse effect or serious harm to ozone layer in the exploited refrigerants. However, low electrocaloric strength in nanocomposite dielectric is severely restricting its wide-spread application because of high applied operating voltage to improve electrocaloric effect. After addressing the chosen optimized ferroelectric ceramic and ferroelectric polymer matrix in conjunction with the analysis of crucial parameters, recent progress of electrocaloric effect(ECE) in polymer nanocomposites has been considerably reviewed. Subsequently, prior to proposing the conceptual design and devices/systems in electrocaloric nanocomposites, the existing developed devices/systems are reviewed. Finally, conclusions and prospects are conducted, including the aspects of materials chosen, structural design and key issues to be considered in improving electrocaloric effect of polymer nanocomposite dielectrics for flexible solidstate cooling devices.
基金supported by the National Natural Science Foundation of China(21573116 and 21231005)Ministry of Education of China(B12015 and IRT13R30)Tianjin Basic and High-Tech Development(15JCYBJC17300)
文摘The booming developments in portable and wearable electronics promote the design of flexible energy storage systems. Flexible supercapacitors and batteries as promising energy storage devices have attracted tremendous attention. As the key component of both supercapacitors and batteries, electrode materials with excellent flexibility should be considered to match with highly flexible energy storage devices. Owing to large surface area, good thermal and chemical stability, high conductivity and mechanical flexibility,graphene-based materials have been widely employed to serve as promising electrodes of flexible energy storage devices. Considerable efforts have been devoted to the fabrication of flexible graphene-based electrodes through a variety of strategies. Moreover, different configurations of energy storage devices based on these active materials are designed. This review highlights flexible graphene-based two-dimensional film and one-dimensional fiber supercapacitors and various batteries including lithium-ion, lithium–sulfur and other batteries. The challenges and promising perspectives of the graphene-based materials for flexible energy storage devices are also discussed.
基金supported by the National Natural Science Foundation of China(Grant No.52175331)the Support plan for Outstanding Youth Innovation Team in Universities of Shandong Province,China(Grand No.2020KJB003)Natural Science Foundation of Shandong Province,China(Granted Nos.ZR2022ME014,ZR2021ME139 and ZR2020ZD04)。
文摘Flexible and stretchable transparent electrodes are widely used in smart display,energy,wearable devices and other fields.Due to the limitations of flexibility and stretchability of indium tin oxide electrodes,alternative electrodes have appeared,such as metal films,metal nanowires,and conductive meshes.However,few of the above electrodes can simultaneously have excellent flexibility,stretchability,and optoelectronic properties.Nanofiber(NF),a continuous ultra-long one-dimensional conductive material,is considered to be one of the ideal materials for high-performance transparent electrodes with excellent properties due to its unique structure.This paper summarizes the important research progress of NF flexible transparent electrodes(FTEs)in recent years from the aspects of NF electrode materials,preparation technology and application.First,the unique advantages and limitations of various NF materials are systematically discussed.Then,we summarize the preparation technology of various advanced NF FTEs,and point out the future development trend.We also discuss the application of NFs in solar cells,supercapacitors,electric heating equipments,sensors,etc,and analyze its development potential in flexible electronic equipment,as well as problems that need to be solved.Finally,the challenges and future development trends are proposed in the wide application of NF FTEs in the field of flexible optoelectronics.
基金supported by the Ministry of Science and Technology of China(National Key Program for Basic Research,No.2001-CCA03500)NSFC(Nos.20674022,20534020,and 20774031)+1 种基金the Natural Science Foundation of Guangdong(Nos.04105931 and 2006A10702003)Guangzhou(No.2004J1-C0041)for financial support.
文摘For the purpose of developing flexible organic photovoltaic devices, we have fabricated two flexible devices using 5-formyl- 2,2′:5′,2″:5″,2′″-quaterthiophene (4T-CHO), 5-formyl-2,2′:5′, 2″:5″,2′″:5′″,2″″-quinquethiophene (5T-CHO) and 3,4,9,10-perylenetertracarboxylic dianhydride (PTCDA). The PET-ITO/4T-CHO/PTCDA/A1 device has an open circuit voltage (Voc) of 1.56 V, photoelectric conversion efficiency of 0.77%. The PET-ITO/5T-CHO/PTCDA/A1 device has a Voc of 1.70 V, photoelectric conversion efficiency of 0.84%. The two flexible devices have high Voc (1.56 and 1.70 V). It is possible that intermolecular hydrogen bonding between -CHO group of nT-CHO and carboxylic dianhydride of PTCDA contributes to enhancing the efficiency by promoting interfacial electron transfer and eliminating the subconducting band trap sites.
基金supported by a National Research Foundation of Korea grant funded by the Korean government(MSIT)(2020R1A2C1101039)by Korea Institute of Energy Technology Evaluation and Planning(KETEP)and the Ministry of Trade,Industry,and Energy(MOTIE)of the Republic of Korea(20204030200060)supported by the Soonchunhyang University Research Fund
文摘In plane micro-supercapacitors that are miniaturized energy storage components have attracted significant attention due to their high power densities for various ubiquitous and sustainable device systems as well as their facile integration on various flexible/wearable platform.To implement the micro-supercapacitors in various practical applications that can accompany solid state or gel electrolyte and flexible substrates,ions must be readily transported to electrodes for achieving high power densities.Herein,we show large enhancement in electrochemical properties of flexible,inplane micro-supercapacitor using sharp-edged interdigitated electrode design,which was simply fabricated through direct laser scribing method.The sharp-edged electrodes allowed strong electric field to be induced at the corners of the electrode fingers which led to the greater accumulation of ions near the surface of electrode,significantly enhancing the energy storage performance of micro-supercapacitors.The electric field-enhanced in-plane micro-supercapacitor showed the volumetric energy density of 1.52 Wh L^(−1)and the excellent cyclability with capacitive retention of 95.4%after 20000 cycles.We further showed various practicability of our sharp-edged design in micro-supercapacitors by showing circuit applicability,mechanical stability,and air stability.These results present an important pathway for designing electrodes in various energy storage devices.
基金supported by the National Natural Science Foundation of China(No.62174068).
文摘With the merits of non-contact,highly efficient,and parallel computing,optoelectronic synaptic devices combining sensing and memory in a single unit are promising for constructing neuromorphic computing and artificial visual chip.Based on this,a N:ZnO/MoS_(2)-heterostructured flexible optoelectronic synaptic device is developed in this work,and its capability in mimicking the synaptic behaviors is systemically investigated under the electrical and light signals.Versatile synaptic functions,including synaptic plasticity,long-term/short-term memory,and learning-forgetting-relearning property,have been achieved in this synaptic device.Further,an artificial visual memory system integrating sense and memory is emulated with the device array,and the visual memory behavior can be regulated by varying the light parameters.Moreover,the optoelectronic co-modulation behavior is verified by applying mixed electric and light signals to the array.In detail,a transient recovery property is discovered when the electric signals are applied in synergy during the decay of the light response,of which property facilitates the development of robust artificial visual systems.Furthermore,by superimposing electrical signals during the light response process,a differentiated response of the array is achieved,which can be used as a proof of concept for the color perception of the artificial visual system.
基金supported by National Natural Science Foundation of China(Grant Nos.11274308 and 21401202)
文摘By means of inkjet printing technique, flexible and all-solid-state micro-supercapacitors(MSCs) were fabricated with carbon-based hybrid ink composed of graphene oxide(GO,98.0vol.%) ink and commercial pen ink(2.0vol.%). A small amount of commercial pen ink was added to effectively reduce the agglomeration of theGO sheets during solvent evaporation and the following reduction processes in which the presence of graphite carbon nanoparticles served as nano-spacer to separate GO sheets. The printed device fabricated using the hybrid ink,combined with the binder-free microelectrodes and interdigital microelectrode configuration, exhibits nearly 780%enhancement in areal capacitance compared with that of pure GO ink. It also shows excellent flexibility and cycling stability with nearly 100% retention of the areal capacitance after 10,000 cycles. The all-solid-state device can be optionally connected in series or in parallel to meet the voltage and capacity requirements for a given application.This work demonstrates a promising future of the carbonbased hybrid ink for directly large-scale inkjet printing MSCs for disposable energy storage devices.
基金The authors thank the financial support of this study received by the National Natural Science Foundation of China(21802173,21822509,and U1810110)Science and Technology Planning Project of Guangdong Province(2018A050506028)Youth Innovation Talents Project of Guangdong Universities(natural science)(2019KQNCX098).
文摘The ever-growing market of wearable electronic devices has greatly stimulated the rapid development of flexible Zn-ion batteries(ZIBs).Manganese oxides are one of the most commonly used hosts for zinc ion accommodation and thus receive particular research interest for high-performance flexible ZIB constructions.In this review,a comprehensive summary of the recent development of flexible ZIBs with manganese oxides as cathode materials is presented.Apart from the brief introduction of flexible electronic devices and ZIBs,the charge storage mechanisms and crystal structures of various manganese oxides are summarized.Modifications of the cathode materials in terms of morphology,conductivity,structures,and flexibilities are illustrated in detail,together with the demonstration of structure-performance relationships and applications in flexible ZIBs.Finally,limitations to be overcome are indicated and the future work directions are proposed.
基金supported by the National Key R&D Program of China(Nos.2022 YFF 1202700 and 2022YFB3203500)National Natural Science Foundation of China(Nos.62225403,62375046,51973024,an d U19A2091)+2 种基金“111”Project(No.B13013)Natur al Sci ence Foundation of Jilin Pro vin ce(No.20230101113JC)the Funding from Jilin Pr ovince(No.20220502002GH).
文摘Recently,electronic skins and fl exible wearable devices have been developed for widespread applications in medical monitoring,artifi cial intelligence,human–machine interaction,and artifi cial prosthetics.Flexible proximity sensors can accurately perceive external objects without contact,introducing a new way to achieve an ultrasensitive perception of objects.This article reviews the progress of fl exible capacitive proximity sensors,fl exible triboelectric proximity sensors,and fl exible gate-enhanced proximity sensors,focusing on their applications in the electronic skin fi eld.Herein,their working mechanism,materials,preparation methods,and research progress are discussed in detail.Finally,we summarize the future challenges in developing fl exible proximity sensors.
基金supported by the Natural Science Foundation of Heilongjiang Province (No.LH2023E035)the Heilongjiang Provincial Postdoctoral Science Foundation (No.LBH-TZ0604)the Open Fund of the State Key Laboratory of Luminescent Materials and Devices,South China University of Technology (No.2022-skllmd-08).
文摘Polymer ionogel(PIG)is a new type of flexible,stretchable,and ion-conductive material,which generally consists of two components(polymer matrix materials and ionic liquids/deep eutectic solvents).More and more attention has been received owing to its excellent properties,such as nonvolatility,good ionic conductivity,excellent thermal stability,high electrochemical stability,and transparency.In this review,the latest research and developments of PIGs are comprehensively reviewed according to different polymer matrices.Particularly,the development of novel structural designs,preparation methods,basic properties,and their advantages are respectively summarized.Furthermore,the typical applications of PIGs in flexible ionic skin,flexible electrochromic devices,flexible actuators,and flexible power supplies are reviewed.The novel working mechanism,device structure design strategies,and the unique functions of the PIG-based flexible ionic devices are briefly introduced.Finally,the perspectives on the current challenges and future directions of PIGs and their application are discussed.
基金financial supports from the National Natural Science Foundation of China(No.61975173)the Key Research and Development Project of Zhejiang Province(No.2022C03103,2023C01045).
文摘As a combination of fiber optics and nanotechnology,optical micro/nanofiber(MNF)is considered as an important multifunctional building block for fabricating various miniaturized photonic devices.With the rapid progress in flexible optoelectronics,MNF has been emerging as a promising candidate for assembling tactile sensors and soft actuators owing to its unique optical and mechanical properties.This review discusses the advances in MNF enabled tactile sensors and soft actuators,specifically,focusing on the latest research results over the past 5 years and the applications in health monitoring,human-machine interfaces,and robotics.Future prospects and challenges in developing flexible MNF devices are also presented.
基金The authors acknowledge the financial support by the National Natural Science Foundation of China(52103089)Foundation for Distinguished Young Talents in Higher Education of Guangdong,China(Project No.2020KQNCX061)+1 种基金the financial support by Shenzhen Fundamental Research Program(No.JCYJ20200109105604088)Open access funding provided by Shanghai Jiao Tong University
文摘The design of power supply systems for wearable applications requires both flexibility and durability.Thermoelectrochemical cells(TECs)with large Seebeck coefficient can efficiently convert lowgrade heat into electricity,thus having attracted considerable attention in recent years.Utilizing hydrogel electrolyte essentially addresses the electrolyte leakage and complicated packaging issues existing in conventional liquid-based TECs,which well satisfies the need for flexibility.Whereas,the concern of mechanical robustness to ensure stable energy output remains yet to be addressed.Herein,a flexible quasisolid-state TEC is proposed based on the rational design of a hydrogel electrolyte,of which the thermogalvanic effect and mechanical robustness are simultaneously regulated via the multivalent ions of a redox couple.The introduced redox ions not only endow the hydrogel with excellent heat-to-electricity conversion capability,but also act as ionic crosslinks to afford a dual-crosslinked structure,resulting in reversible bonds for effective energy dissipation.The optimized TEC exhibits a high Seebeck coefficient of 1.43 mV K−1 and a significantly improved fracture toughness of 3555 J m^(−2),thereby can maintain a stable thermoelectrochemical performance against various harsh mechanical stimuli.This study reveals the high potential of the quasi-solid-state TEC as a flexible and durable energy supply system for wearable applications.