With the spectacular rise of wearable and portable electronics,flexible power supplying systems with robust mechanical flexibility and high energy storage performance under various mechanical deformation conditions ar...With the spectacular rise of wearable and portable electronics,flexible power supplying systems with robust mechanical flexibility and high energy storage performance under various mechanical deformation conditions are imperative to be needed.Sodium ion batteries(SIBs)with sustainable natural abundance,low cost and superb properties similar to equivalent lithium ion batteries(LIBs),which have shown significant potentials as energy source for flexible electronic devices.In this review,the recent advances in flexible electrode materials based on different types of conductive substrates are addressed and the strategies underlying rational design for flexible structures are highlighted,as well as their applications in flexible SIBs.The remaining key challenges in rational electrodes design are discussed,and perspectives for practical applications of flexible SIBs are proposed as general guidance for future research of high-performance flexible SIBs.展开更多
The recent rapid growth in electronics has reached the point where there is a need for solid-state devices with excellent physical flexibility, which will be a significant advantage in modern electronic devices. In ...The recent rapid growth in electronics has reached the point where there is a need for solid-state devices with excellent physical flexibility, which will be a significant advantage in modern electronic devices. In particular, metal nanowires and nano-particles are chosen for electrodes because of their low resistance and high mechanical stability. Among the various alternatives, Ag nanomaterials have recently garnered increasing attention due to the high intrinsic conductivity, a transparency with a low sheet resistance and relatively low cost. We herein summarize recent developments toward flexible electronics on the basis of Ag nanomaterials , which show promising performance and outperform the commonly used. The typical fabrication techniques along with the promising applications for flexible devices, are thoroughly discussed.展开更多
Flexible electrodes have been widely focused on in recent years due to their special mechanical properties,which can be directly integrated onto human soft tissues to actively take effects on human body or passively m...Flexible electrodes have been widely focused on in recent years due to their special mechanical properties,which can be directly integrated onto human soft tissues to actively take effects on human body or passively monitor human vital signs.These flexible electrodes provide a new routine to realize clinical treatment of accurate thermal ablation in the biological tissues via radiofrequency ablation(RFA).Meanwhile,accurately controlling of thermal field is very significant for the thermal ablation in the clinical therapeutics to prevent the healthy tissue from excessive burning.In this paper,both one-dimensional and two-dimensional axisymmetric analytical models for the electrothermal analysis of radiofrequency ablation considering bio-heat transfer are established,which are verified by finite element analysis(FEA)and in vitro experiments on pig skins.In the model,the electrical field and thermal field are both derived analytically to accurately predict the temperature rise in the biological tissues.Furthermore,parameters,such as the blood flow convection in living tissues and thickness of tissue,have obvious effects on the thermal field in the tissues.They may pave the theoretical foundation and provide guidance of RFA with flexible electrodes in the future.展开更多
The controlled assembly of nanomaterials has demon-strated significant potential in advancing technological devices.However,achieving highly efficient and low-loss assembly technique for nanomate-rials,enabling the cr...The controlled assembly of nanomaterials has demon-strated significant potential in advancing technological devices.However,achieving highly efficient and low-loss assembly technique for nanomate-rials,enabling the creation of hierarchical structures with distinctive func-tionalities,remains a formidable challenge.Here,we present a method for nanomaterial assembly enhanced by ionic liquids,which enables the fabrication of highly stable,flexible,and transparent electrodes featuring an organized layered structure.The utilization of hydrophobic and non-volatile ionic liquids facilitates the production of stable interfaces with water,effectively preventing the sedimentation of 1D/2D nanomaterials assembled at the interface.Furthermore,the interfacially assembled nanomaterial monolayer exhibits an alternate self-climbing behavior,enabling layer-by-layer transfer and the formation of a well-ordered MXene-wrapped silver nanowire network film.The resulting composite film not only demonstrates exceptional photoelectric performance with a sheet resistance of 9.4Ωsq^(-1) and 93%transmittance,but also showcases remarkable environmental stability and mechanical flexibility.Particularly noteworthy is its application in transparent electromagnetic interference shielding materials and triboelectric nanogenerator devices.This research introduces an innovative approach to manufacture and tailor functional devices based on ordered nanomaterials.展开更多
ZnO nanowires(ZnO NWs),ZnO nanoparticles(ZnO NPs)and carbon dots(C-dots)were synthesized by hydrothermal,sol-gel and hydrothermal methods respectively.They were also characterized and applied for dye sensitized solar ...ZnO nanowires(ZnO NWs),ZnO nanoparticles(ZnO NPs)and carbon dots(C-dots)were synthesized by hydrothermal,sol-gel and hydrothermal methods respectively.They were also characterized and applied for dye sensitized solar cells(DSSCs).The effects of C-dots on ZnO NWs and ZnO NPs have been evaluated.The C-dots were used at a mole ratio of citric acid(CA)to ethylene diamine(EDA)of 1:1.5.These C-dots were found to enhance the performance of the flexible electrode DSSCs.After the addition of C-dots,the power conversion efficiency(PCE)of ZnO NPs was boosted to be two times higher than that of ZnO NPs DSSCs without C-dots.Similarly,the ultraviolet(UV)-band revealed a blue shift,resulting in a lower band gap and a reduced charge transfer resistance,which can enhance the PCE of DSSCs.The loaded quantity on the flexible electrode substrate made of polyethylene terephthalate(PET)was optimized(50 mg).For DSSCs,the PET flexible electrode conductive polymer has produced positive outcomes.For ZnO NWs and ZnO NWs@C-dots,the PCE values were 1.45%and 4.25%;while for ZnO NPs and ZnO NPs@C-dots,they were 2.34%and 5.81%,respectively.This work achieved remarkable and competitive performance when compared to solid(indium tin oxides/glass)-based substrate.展开更多
A conventional electrode composite for rechargeable zinc-ion batteries(ZIBs)includes a binder for strong adhesion between the electrode material and the current collector.However,the introduction of a binder leads to ...A conventional electrode composite for rechargeable zinc-ion batteries(ZIBs)includes a binder for strong adhesion between the electrode material and the current collector.However,the introduction of a binder leads to electrochemical inactivity and low electrical conductivity,resulting in the decay of the capacity and a low rate capability.We present a binder-and conducting agent-free VO_(2)composite electrode using in situ polymerization of dopamine on a flexible current collector of pyroprotein-based fibers.The as-fabricated composite electrode was used as a substrate for the direct growth of VO_(2)as a self-supported form on polydopamine-derived pyroprotein-based fibers(pp-fibers@VO_(2)(B)).It has a high conductivity and flexible nature as a current collector and moderate binding without conventional binders and conducting agents for the VO_(2)(B)cathode.In addition,their electrochemical mechanism was elucidated.Their energy storage is induced by Zn^(2+)/H^(+)coinsertion during discharging,which can be confirmed by the lattice expansion,the formation of by-products including Zn_(x)(OTf)_(y)(OH)_(2x−y)·nH_(2)O,and the reduction of V^(4+)to V^(3+).Furthermore,the assembled Zn//pp-fibers@VO_(2)(B)pouch cells have excellent flexibility and stable electrochemical performance under various bending states,showing application possibilities for portable and wearable power sources.展开更多
Flexible and stretchable transparent electrodes are widely used in smart display,energy,wearable devices and other fields.Due to the limitations of flexibility and stretchability of indium tin oxide electrodes,alterna...Flexible and stretchable transparent electrodes are widely used in smart display,energy,wearable devices and other fields.Due to the limitations of flexibility and stretchability of indium tin oxide electrodes,alternative electrodes have appeared,such as metal films,metal nanowires,and conductive meshes.However,few of the above electrodes can simultaneously have excellent flexibility,stretchability,and optoelectronic properties.Nanofiber(NF),a continuous ultra-long one-dimensional conductive material,is considered to be one of the ideal materials for high-performance transparent electrodes with excellent properties due to its unique structure.This paper summarizes the important research progress of NF flexible transparent electrodes(FTEs)in recent years from the aspects of NF electrode materials,preparation technology and application.First,the unique advantages and limitations of various NF materials are systematically discussed.Then,we summarize the preparation technology of various advanced NF FTEs,and point out the future development trend.We also discuss the application of NFs in solar cells,supercapacitors,electric heating equipments,sensors,etc,and analyze its development potential in flexible electronic equipment,as well as problems that need to be solved.Finally,the challenges and future development trends are proposed in the wide application of NF FTEs in the field of flexible optoelectronics.展开更多
Flexible electrochromic energy storage devices(FECESDs)for powering flexible electronics have attracted considerable attention.Silver nanowires(AgNWs)are one kind of the most promising flexible transparent electrodes(...Flexible electrochromic energy storage devices(FECESDs)for powering flexible electronics have attracted considerable attention.Silver nanowires(AgNWs)are one kind of the most promising flexible transparent electrodes(FTEs)materials for the emerging flexible devices.Currently,fabricating FECESD based on AgNWs FTEs is still hindered by their intrinsic poor electrochemical stability.To address this issue,a hybrid AgNWs/Co(OH)_(2)/PEDOT:PSS electrode is proposed.The PEDOT:PSS could not only improve the resistance against electrochemical corrosion of AgNWs,but also work as functional layer to realize the color-changing and energy storage properties.Moreover,the Co(OH)_(2)interlayer further improved the color-changing and energy storage performance.Based on the improvement,we assembled the symmetrical FECESDs.Under the same condition,the areal capacitance(0.8 mF cm^(−2))and coloration efficiency(269.80 cm^(2)C−1)of AgNWs/Co(OH)_(2)/PEDOT:PSS FECESDs were obviously higher than AgNWs/PEDOT:PSS FECESDs.Furthermore,the obtained FECESDs exhibited excellent stability against the mechanical deformation.The areal capacitance remained stable during 1000 times cyclic bending with a 25 mm curvature radius.These results demonstrated the broad application potential of the AgNWs/Co(OH)_(2)/PEDOT:PSS FECESD for the emerging portable and multifunctional electronics.展开更多
Flexible perovskite solar cells(FPSCs) have attracted enormous interest in wearable and portable electronics due to their high power-per-weight and low cost. Flexible and efficient perovskite solar cells require the d...Flexible perovskite solar cells(FPSCs) have attracted enormous interest in wearable and portable electronics due to their high power-per-weight and low cost. Flexible and efficient perovskite solar cells require the development of flexible electrodes compatible with the optoelectronic properties of perovskite. In this review, the recent progress of flexible electrodes used in FPSCs is comprehensively reviewed. The major features of flexible transparent electrodes, including transparent conductive oxides, conductive polymer, carbon nanomaterials and nanostructured metallic materials are systematically compared. And the corresponding modification strategies and device performance are summarized. Moreover, flexible opaque electrodes including metal films, opaque carbon materials and metal foils are critically assessed. Finally, the development directions and difficulties of flexible electrodes are given.展开更多
TiN, platinum (Pt) black and iridium oxide are introduced to the stimulating sites to improve the performance of the flexible electrode. Low temperature process is used to fabricate the modifying films. TiN is coate...TiN, platinum (Pt) black and iridium oxide are introduced to the stimulating sites to improve the performance of the flexible electrode. Low temperature process is used to fabricate the modifying films. TiN is coated on the gold sites by magnetron sputtering while platinum black and iridium oxide are coated by electroplating and electrodeposifion, respectively. The impedance of the electrode decreases dramatically after modification. The combined analysis of surface morphology and cyclic voltammograms (CV) in phosphate buffer saline (PBS) solution indicates that the modified electrode sites have larger electrode-electrolyte capacitance and smaller faradic resistance than unmodified sites, thus they have smaller electrochemical impedances.展开更多
Self-standing porous WP2 nanosheet arrays on carbon fiber cloth (WP2 NSs/CC) were synthesized and used as a 3D flexible hydrogen evolution electrode. Because of its 3D porous nanoarray structure, the WP2 NSs/CC exhi...Self-standing porous WP2 nanosheet arrays on carbon fiber cloth (WP2 NSs/CC) were synthesized and used as a 3D flexible hydrogen evolution electrode. Because of its 3D porous nanoarray structure, the WP2 NSs/CC exhibits a remarkable catalytic activity and a high stability. By using the experimental measurements and first-principle calculations, the underlying reasons for the excellent catalytic activity were further explored. Our work makes the present WPz NSs as a promising electrocatalyst for hydrogen evolution and provides a way to design and fabricate efficient hydrogen evolution electrodes through 3D porous nano-arrays architecture.展开更多
Free organic solvent ink containing graphite, carboxymethyl cellulose and microfibrillated cellulose as active material, dispersing and binder, respectively, has been formulated to produce flexible and eco- sustainabl...Free organic solvent ink containing graphite, carboxymethyl cellulose and microfibrillated cellulose as active material, dispersing and binder, respectively, has been formulated to produce flexible and eco- sustainable electrodes for lithium ion batteries. Content ratio of components and dispersion protocol were tailored in order to have theological properties suitable for a large and cheap manufacturing process as well as screen printing. The bio-sourced printed electrodes exhibit a high porosity value of 70% that limits the electrochemical performances. However, the calendering process enhances electrode performances by increasing the reversible capacity from 85 until 315 mAh/g and reducing porosity to an optimal value of 34%. Moreover the introduction of 2% w/w of monofluoro-ethylene carbonate in the electrolyte reduced their reversible capacity loss of 11% in the printed electrode.展开更多
Nanomaterials with various dimensionalities(e.g.,nanowires,nanofilms,two-dimensional materials,and three-dimensional nanostructures)have shown great potential in the recent development of flexible electronics.Conventi...Nanomaterials with various dimensionalities(e.g.,nanowires,nanofilms,two-dimensional materials,and three-dimensional nanostructures)have shown great potential in the recent development of flexible electronics.Conventionally,organic solvents are inevitable while integrating nanomaterials onto flexible substrates,where polymer mediator-assisted transfer techniques are involved.This often damages the flexible substrate and thus hamper the large-scale application of nanomaterials.Here we report a method using watersoluble sugar as a mediator to facilely transfer nanomaterials onto rigid or flexible substrates.This method requires no organic solvent during transfer.More importantly,the morphology and properties of transferred nanomaterials,such as shape,microstructure,resistivity,and transmittance are well preserved on the target substrate.We believe that this universal and rapid transfer method can greatly advance the applications of nanomaterials in the field of flexible devices and beyond.展开更多
A novel low temperature method was used to prepare the mesoporous carbon(MC) counter electrode(CE) on indium-doped tin oxide coated polyethylene naphthalate(ITO-PEN) for flexible dye-sensitized solar cells(DSSC...A novel low temperature method was used to prepare the mesoporous carbon(MC) counter electrode(CE) on indium-doped tin oxide coated polyethylene naphthalate(ITO-PEN) for flexible dye-sensitized solar cells(DSSCs).The obtained flexible MC CEs with carbon loading of 280μg cm^(-2) were characterized by SEM,XRD and electrochemical impedance.The light-to-electricity conversion efficiency of the DSSC fabricated with the prepared flexible MC CE was 86%of that of DSSC based on the decomposited Pt CE.展开更多
The deposition of active materials directly onto metal wires is a general strategy to prepare wire-shaped electrodes for flexible and wearable energy storage devices. However, it is still a critical challenge to coat ...The deposition of active materials directly onto metal wires is a general strategy to prepare wire-shaped electrodes for flexible and wearable energy storage devices. However, it is still a critical challenge to coat active materials onto the aimed metal wires because of their smooth surface and small specific surface area. In this work, high porous nickel yarns(PNYs) was fabricated using commercial nylon yarns as templates through step-wise electroless plating, electroplating and calcination processes. The PNYs are composed of multiplied fibers with hollow tubular structure of 5–10 μm in diameter, allowing the imbibition of carbon nanotubes(CNTs) solution by a facile capillary action process. The prepared CNTs/PNY electrodes showed a typical electrochemical double layer capacitive performance and the constructed allsolid flexible wire-shaped symmetric supercapacitors provided a specific capacitance of 4.67 F/cm3 with good cycling stability at a current density of 0.6 A/cm3.展开更多
In vivo monitoring of bioelectrical and biochemical signals with implanted electrodes has received great interest over the past decades.However,this faces huge challenges because of the severe mechanical mismatch betw...In vivo monitoring of bioelectrical and biochemical signals with implanted electrodes has received great interest over the past decades.However,this faces huge challenges because of the severe mechanical mismatch between conventional rigid electrodes and soft biological tissues.In recent years,the emergence of flexible and stretchable electrodes offers seamless and conformable biological-electronic interfaces and has demonstrated significant advantages for in vivo electrochemical and electrophysiological monitoring.This review first summarizes the strategies for electrode fabrication from the point of substrate and conductive materials.Next,recent progress in electrode functionalization for improved performance is presented.Then,the advances of flexible and stretchable electrodes in exploring bioelectrical and biochemical signals are introduced.Finally,we present some challenges and perspectives ranging from electrode fabrication to application.展开更多
The advancement of energy storage technology has paved the way for the application of electrochemi-cal processes in achieving low-carbon and precise environmental pollution reduction.Electrodes play a crucial role in ...The advancement of energy storage technology has paved the way for the application of electrochemi-cal processes in achieving low-carbon and precise environmental pollution reduction.Electrodes play a crucial role in efficiently removing organic pollutants and heavy metals.To implement electrochemical pollution control technology in practical engineering,flexible electrode preparation is vital.This review highlights recent progress in flexible electrode research,focusing on the selection and structural design of flexible electrode materials.It summarizes the latest advancements in current collectors,active mate-rials,and preparation methods to enhance conductivity,flexibility,and cycle stability.The application of flexible electrodes in water pollution control is categorized into three aspects:Organic pollutants,inor-ganic pollutants,and composite pollutants.Finally,the challenges and research requirements for enhanc-ing electrode flexibility in environmental governance are discussed,along with prospects for their future applications.展开更多
Conventional Li-O2 battery is hardly considered as a next-generation flexible electronics thus far,since it is inflexible,bulk,and limited by the absence of the adjustable cell configuration.Here,we report a binder-fr...Conventional Li-O2 battery is hardly considered as a next-generation flexible electronics thus far,since it is inflexible,bulk,and limited by the absence of the adjustable cell configuration.Here,we report a binder-free and flexible electrode of x wt%MoO2 NPs/CTs(x=6,16,and 28).A cell with 16 wt% MoO2 NPs/CTs displays a good cyclability over 240 cycles with a low overpotential of 0.33 V on the 1st cycle at a constant current density of 0.2 mA cm-2,a considerable rate performance,a superior reversibility associated with the desired formation and degradation of Li2O2,and a high electrochemical stability even under stringent bending and twisting conditions.Our work represents a promising progress in the material development and architecture design of O2 electrode for flexible Li-O2 batteries.展开更多
Flexible batteries are key component of wearable electronic devices.Based on the requirements of medical and primary safety of wearable energy storage devices,rechargeable aqueous zinc ion batteries(ZIBs)are promising...Flexible batteries are key component of wearable electronic devices.Based on the requirements of medical and primary safety of wearable energy storage devices,rechargeable aqueous zinc ion batteries(ZIBs)are promising portable candidates in virtue of its intrinsic safety,abundant storage and low cost.However,many inherent challenges have greatly hindered the development in flexible Zn-based energy storage devices,such as rigid current collector and/or metal anode,easily detached cathode materials and a relatively narrow voltage window of flexible electrolyte.Thus,overcoming these challenges and further developing flexible ZIBs are inevitable and imperative.This review summarizes the most advanced progress in designs and discusses of flexible electrode,electrolyte and the practical application of flexible ZIBs in different environments.We also exhibit the heart of the matter that current flexible ZIBs faces.Finally,some prospective approaches are proposed to address these key issues and point out the direction for the future development of flexible ZIBs.展开更多
Flexible lithium-ion batteries(LIBs)are critical for the development of next-generation smart electronics.Conversion reaction-based electrodes have been considered promising to construct high energy-density flexible L...Flexible lithium-ion batteries(LIBs)are critical for the development of next-generation smart electronics.Conversion reaction-based electrodes have been considered promising to construct high energy-density flexible LIBs,which satisfy the ever-increasing demand for practical use.However,these electrodes suffer from inferior lithium-storage performance and structural instability during deformation and long-term lithiation/delithiation.These are caused by the sluggish reaction kinetics of active-materials and the superposition of responsive strains originating from the large lithiation-induced stress and applied stress.Here,we propose a stress-release strategy through elastic responses of nested wrinkle texturing of graphene,to achieve high deformability while maintaining structural integrity upon prolonged cycles within high-capacity electrodes.The wrinkles endow the electrode with a robust and flexible network for effective stress release.The resulting electrode shows large reversible stretchability,along with excellent electrochemical performance including high specific capacity,high-rate capability and long-term cycling stability.This strategy offers a new way to obtain high-performance flexible electrodes and can be extended to other energy-storage devices.展开更多
基金financially supported by the National Natural Science Foundation of China(52101267)the China Postdoctoral Science Foundation(2021M690117)。
文摘With the spectacular rise of wearable and portable electronics,flexible power supplying systems with robust mechanical flexibility and high energy storage performance under various mechanical deformation conditions are imperative to be needed.Sodium ion batteries(SIBs)with sustainable natural abundance,low cost and superb properties similar to equivalent lithium ion batteries(LIBs),which have shown significant potentials as energy source for flexible electronic devices.In this review,the recent advances in flexible electrode materials based on different types of conductive substrates are addressed and the strategies underlying rational design for flexible structures are highlighted,as well as their applications in flexible SIBs.The remaining key challenges in rational electrodes design are discussed,and perspectives for practical applications of flexible SIBs are proposed as general guidance for future research of high-performance flexible SIBs.
基金Program for the Top Young Academic Leaders of Higher Learning Institutions of Shanxi,100 Persons Program of Shanxithe Project Supported by Science Foundation of North University of China(No.110248-28140)The Project Supported by Science and Technology on Electronic Test & Measurement Laboratory(No.110103112113)
文摘The recent rapid growth in electronics has reached the point where there is a need for solid-state devices with excellent physical flexibility, which will be a significant advantage in modern electronic devices. In particular, metal nanowires and nano-particles are chosen for electrodes because of their low resistance and high mechanical stability. Among the various alternatives, Ag nanomaterials have recently garnered increasing attention due to the high intrinsic conductivity, a transparency with a low sheet resistance and relatively low cost. We herein summarize recent developments toward flexible electronics on the basis of Ag nanomaterials , which show promising performance and outperform the commonly used. The typical fabrication techniques along with the promising applications for flexible devices, are thoroughly discussed.
基金The authors acknowledge the supports from the National Natural Science Foundation of China(No.11772030)the Aeronautical Science Foundation of China(No.2018ZC51030).
文摘Flexible electrodes have been widely focused on in recent years due to their special mechanical properties,which can be directly integrated onto human soft tissues to actively take effects on human body or passively monitor human vital signs.These flexible electrodes provide a new routine to realize clinical treatment of accurate thermal ablation in the biological tissues via radiofrequency ablation(RFA).Meanwhile,accurately controlling of thermal field is very significant for the thermal ablation in the clinical therapeutics to prevent the healthy tissue from excessive burning.In this paper,both one-dimensional and two-dimensional axisymmetric analytical models for the electrothermal analysis of radiofrequency ablation considering bio-heat transfer are established,which are verified by finite element analysis(FEA)and in vitro experiments on pig skins.In the model,the electrical field and thermal field are both derived analytically to accurately predict the temperature rise in the biological tissues.Furthermore,parameters,such as the blood flow convection in living tissues and thickness of tissue,have obvious effects on the thermal field in the tissues.They may pave the theoretical foundation and provide guidance of RFA with flexible electrodes in the future.
基金This work was supported by the National Natural Science Foundation of China(nos.21988102,and 22305026)the China Postdoctoral Science Foundation(2019M650433).
文摘The controlled assembly of nanomaterials has demon-strated significant potential in advancing technological devices.However,achieving highly efficient and low-loss assembly technique for nanomate-rials,enabling the creation of hierarchical structures with distinctive func-tionalities,remains a formidable challenge.Here,we present a method for nanomaterial assembly enhanced by ionic liquids,which enables the fabrication of highly stable,flexible,and transparent electrodes featuring an organized layered structure.The utilization of hydrophobic and non-volatile ionic liquids facilitates the production of stable interfaces with water,effectively preventing the sedimentation of 1D/2D nanomaterials assembled at the interface.Furthermore,the interfacially assembled nanomaterial monolayer exhibits an alternate self-climbing behavior,enabling layer-by-layer transfer and the formation of a well-ordered MXene-wrapped silver nanowire network film.The resulting composite film not only demonstrates exceptional photoelectric performance with a sheet resistance of 9.4Ωsq^(-1) and 93%transmittance,but also showcases remarkable environmental stability and mechanical flexibility.Particularly noteworthy is its application in transparent electromagnetic interference shielding materials and triboelectric nanogenerator devices.This research introduces an innovative approach to manufacture and tailor functional devices based on ordered nanomaterials.
文摘ZnO nanowires(ZnO NWs),ZnO nanoparticles(ZnO NPs)and carbon dots(C-dots)were synthesized by hydrothermal,sol-gel and hydrothermal methods respectively.They were also characterized and applied for dye sensitized solar cells(DSSCs).The effects of C-dots on ZnO NWs and ZnO NPs have been evaluated.The C-dots were used at a mole ratio of citric acid(CA)to ethylene diamine(EDA)of 1:1.5.These C-dots were found to enhance the performance of the flexible electrode DSSCs.After the addition of C-dots,the power conversion efficiency(PCE)of ZnO NPs was boosted to be two times higher than that of ZnO NPs DSSCs without C-dots.Similarly,the ultraviolet(UV)-band revealed a blue shift,resulting in a lower band gap and a reduced charge transfer resistance,which can enhance the PCE of DSSCs.The loaded quantity on the flexible electrode substrate made of polyethylene terephthalate(PET)was optimized(50 mg).For DSSCs,the PET flexible electrode conductive polymer has produced positive outcomes.For ZnO NWs and ZnO NWs@C-dots,the PCE values were 1.45%and 4.25%;while for ZnO NPs and ZnO NPs@C-dots,they were 2.34%and 5.81%,respectively.This work achieved remarkable and competitive performance when compared to solid(indium tin oxides/glass)-based substrate.
基金supported by“Regional Innovation Strategy (RIS)”through the National Research Foundation of Korea (NRF)funded by the Ministry of Education (MOE) (2021RIS-001)supported by National Research Foundation (NRF)funded by the Ministry of Science and Technology (NRF-2021R1F1A1064111)Ministry of Education (NRF-2017R1A6A1A06015181)of the Republic of Korea.
文摘A conventional electrode composite for rechargeable zinc-ion batteries(ZIBs)includes a binder for strong adhesion between the electrode material and the current collector.However,the introduction of a binder leads to electrochemical inactivity and low electrical conductivity,resulting in the decay of the capacity and a low rate capability.We present a binder-and conducting agent-free VO_(2)composite electrode using in situ polymerization of dopamine on a flexible current collector of pyroprotein-based fibers.The as-fabricated composite electrode was used as a substrate for the direct growth of VO_(2)as a self-supported form on polydopamine-derived pyroprotein-based fibers(pp-fibers@VO_(2)(B)).It has a high conductivity and flexible nature as a current collector and moderate binding without conventional binders and conducting agents for the VO_(2)(B)cathode.In addition,their electrochemical mechanism was elucidated.Their energy storage is induced by Zn^(2+)/H^(+)coinsertion during discharging,which can be confirmed by the lattice expansion,the formation of by-products including Zn_(x)(OTf)_(y)(OH)_(2x−y)·nH_(2)O,and the reduction of V^(4+)to V^(3+).Furthermore,the assembled Zn//pp-fibers@VO_(2)(B)pouch cells have excellent flexibility and stable electrochemical performance under various bending states,showing application possibilities for portable and wearable power sources.
基金supported by the National Natural Science Foundation of China(Grant No.52175331)the Support plan for Outstanding Youth Innovation Team in Universities of Shandong Province,China(Grand No.2020KJB003)Natural Science Foundation of Shandong Province,China(Granted Nos.ZR2022ME014,ZR2021ME139 and ZR2020ZD04)。
文摘Flexible and stretchable transparent electrodes are widely used in smart display,energy,wearable devices and other fields.Due to the limitations of flexibility and stretchability of indium tin oxide electrodes,alternative electrodes have appeared,such as metal films,metal nanowires,and conductive meshes.However,few of the above electrodes can simultaneously have excellent flexibility,stretchability,and optoelectronic properties.Nanofiber(NF),a continuous ultra-long one-dimensional conductive material,is considered to be one of the ideal materials for high-performance transparent electrodes with excellent properties due to its unique structure.This paper summarizes the important research progress of NF flexible transparent electrodes(FTEs)in recent years from the aspects of NF electrode materials,preparation technology and application.First,the unique advantages and limitations of various NF materials are systematically discussed.Then,we summarize the preparation technology of various advanced NF FTEs,and point out the future development trend.We also discuss the application of NFs in solar cells,supercapacitors,electric heating equipments,sensors,etc,and analyze its development potential in flexible electronic equipment,as well as problems that need to be solved.Finally,the challenges and future development trends are proposed in the wide application of NF FTEs in the field of flexible optoelectronics.
基金supports from the National Natural Science Foundation of China (Grant No. 52175300)Fundamental Research Funds for the Central Universities (2022FRFK060008)+2 种基金Heilongjiang Touyan Innovation Team Program (HITTY-20190013)Shenzhen Fundamental Research Programs (JCYJ20200925160843002)Start-up fund of SUSTech (Y01256114)
文摘Flexible electrochromic energy storage devices(FECESDs)for powering flexible electronics have attracted considerable attention.Silver nanowires(AgNWs)are one kind of the most promising flexible transparent electrodes(FTEs)materials for the emerging flexible devices.Currently,fabricating FECESD based on AgNWs FTEs is still hindered by their intrinsic poor electrochemical stability.To address this issue,a hybrid AgNWs/Co(OH)_(2)/PEDOT:PSS electrode is proposed.The PEDOT:PSS could not only improve the resistance against electrochemical corrosion of AgNWs,but also work as functional layer to realize the color-changing and energy storage properties.Moreover,the Co(OH)_(2)interlayer further improved the color-changing and energy storage performance.Based on the improvement,we assembled the symmetrical FECESDs.Under the same condition,the areal capacitance(0.8 mF cm^(−2))and coloration efficiency(269.80 cm^(2)C−1)of AgNWs/Co(OH)_(2)/PEDOT:PSS FECESDs were obviously higher than AgNWs/PEDOT:PSS FECESDs.Furthermore,the obtained FECESDs exhibited excellent stability against the mechanical deformation.The areal capacitance remained stable during 1000 times cyclic bending with a 25 mm curvature radius.These results demonstrated the broad application potential of the AgNWs/Co(OH)_(2)/PEDOT:PSS FECESD for the emerging portable and multifunctional electronics.
基金financially supported by the National Natural Science Foundation of China(52192610)the National Key Research and Development Program of China(Grant 2021YFA0715600)+1 种基金the Key Research and Development Program of Shaanxi Province(Grant 2020GY-310)the Fundamental Research Funds for the Central Universities and the Innovation Fund of Xidian University。
文摘Flexible perovskite solar cells(FPSCs) have attracted enormous interest in wearable and portable electronics due to their high power-per-weight and low cost. Flexible and efficient perovskite solar cells require the development of flexible electrodes compatible with the optoelectronic properties of perovskite. In this review, the recent progress of flexible electrodes used in FPSCs is comprehensively reviewed. The major features of flexible transparent electrodes, including transparent conductive oxides, conductive polymer, carbon nanomaterials and nanostructured metallic materials are systematically compared. And the corresponding modification strategies and device performance are summarized. Moreover, flexible opaque electrodes including metal films, opaque carbon materials and metal foils are critically assessed. Finally, the development directions and difficulties of flexible electrodes are given.
基金supported by the Major National Scientific Research Plan (Grant Nos. 2011CB933203, 2011CB933102)National Natural Science Foundation of China (Grant Nos. 61036002, 60877035, 31070965)
文摘TiN, platinum (Pt) black and iridium oxide are introduced to the stimulating sites to improve the performance of the flexible electrode. Low temperature process is used to fabricate the modifying films. TiN is coated on the gold sites by magnetron sputtering while platinum black and iridium oxide are coated by electroplating and electrodeposifion, respectively. The impedance of the electrode decreases dramatically after modification. The combined analysis of surface morphology and cyclic voltammograms (CV) in phosphate buffer saline (PBS) solution indicates that the modified electrode sites have larger electrode-electrolyte capacitance and smaller faradic resistance than unmodified sites, thus they have smaller electrochemical impedances.
文摘Self-standing porous WP2 nanosheet arrays on carbon fiber cloth (WP2 NSs/CC) were synthesized and used as a 3D flexible hydrogen evolution electrode. Because of its 3D porous nanoarray structure, the WP2 NSs/CC exhibits a remarkable catalytic activity and a high stability. By using the experimental measurements and first-principle calculations, the underlying reasons for the excellent catalytic activity were further explored. Our work makes the present WPz NSs as a promising electrocatalyst for hydrogen evolution and provides a way to design and fabricate efficient hydrogen evolution electrodes through 3D porous nano-arrays architecture.
基金partially supported by theénergies du Futur Carnot Institute(Investissements d’Avenir-grant agreement No.ANR-11-CARN-030-01)the facilities of the Tek Li Cell platform funded by the Région Rhone-Alpes(ERDF:European Regional Development Fund)
文摘Free organic solvent ink containing graphite, carboxymethyl cellulose and microfibrillated cellulose as active material, dispersing and binder, respectively, has been formulated to produce flexible and eco- sustainable electrodes for lithium ion batteries. Content ratio of components and dispersion protocol were tailored in order to have theological properties suitable for a large and cheap manufacturing process as well as screen printing. The bio-sourced printed electrodes exhibit a high porosity value of 70% that limits the electrochemical performances. However, the calendering process enhances electrode performances by increasing the reversible capacity from 85 until 315 mAh/g and reducing porosity to an optimal value of 34%. Moreover the introduction of 2% w/w of monofluoro-ethylene carbonate in the electrolyte reduced their reversible capacity loss of 11% in the printed electrode.
基金financially supported by the funds of the“Science Technology and Innovation Committee of Shenzhen Municipality”(grant No.JCYJ20160613160524999 and JCYJ20170817111714314)“Guangdong Innovative and Entrepreneurial Research Team Program”under contract No.2016ZT06G587+1 种基金the National Natural Science Foundation of China(No.51771089 and U1613204)the Key-Area Research and Development Program of Guangdong Province(No.2019B010931001).
文摘Nanomaterials with various dimensionalities(e.g.,nanowires,nanofilms,two-dimensional materials,and three-dimensional nanostructures)have shown great potential in the recent development of flexible electronics.Conventionally,organic solvents are inevitable while integrating nanomaterials onto flexible substrates,where polymer mediator-assisted transfer techniques are involved.This often damages the flexible substrate and thus hamper the large-scale application of nanomaterials.Here we report a method using watersoluble sugar as a mediator to facilely transfer nanomaterials onto rigid or flexible substrates.This method requires no organic solvent during transfer.More importantly,the morphology and properties of transferred nanomaterials,such as shape,microstructure,resistivity,and transmittance are well preserved on the target substrate.We believe that this universal and rapid transfer method can greatly advance the applications of nanomaterials in the field of flexible devices and beyond.
基金supported by the National Nature Science Foundation of China(No.20975012)the 111 Project (B07012)+1 种基金the Major State Basic Research Development Program(No.2006CB202605)the High-Tech Research and Development Program of China(No.2007AA05Z439)
文摘A novel low temperature method was used to prepare the mesoporous carbon(MC) counter electrode(CE) on indium-doped tin oxide coated polyethylene naphthalate(ITO-PEN) for flexible dye-sensitized solar cells(DSSCs).The obtained flexible MC CEs with carbon loading of 280μg cm^(-2) were characterized by SEM,XRD and electrochemical impedance.The light-to-electricity conversion efficiency of the DSSC fabricated with the prepared flexible MC CE was 86%of that of DSSC based on the decomposited Pt CE.
基金supported by Priority Academic Program Development of Jiangsu Higher Education Institutions (YX03001)Jiangsu National Synergetic Innovation Center for Advanced Materials (SICAM)+3 种基金Synergistic Innovation Center for Organic Electronics and Information Displays, Jiangsu Provincial NSF (BK20160890, BK20141424, BK20150863)Jiangsu Province "Six Talent Peak" (2014-XCL-014)Qing Lan Project of Jiangsu ProvinceScientific Research Foundation of NUPT (NY214183, NY215014, NY215152)
文摘The deposition of active materials directly onto metal wires is a general strategy to prepare wire-shaped electrodes for flexible and wearable energy storage devices. However, it is still a critical challenge to coat active materials onto the aimed metal wires because of their smooth surface and small specific surface area. In this work, high porous nickel yarns(PNYs) was fabricated using commercial nylon yarns as templates through step-wise electroless plating, electroplating and calcination processes. The PNYs are composed of multiplied fibers with hollow tubular structure of 5–10 μm in diameter, allowing the imbibition of carbon nanotubes(CNTs) solution by a facile capillary action process. The prepared CNTs/PNY electrodes showed a typical electrochemical double layer capacitive performance and the constructed allsolid flexible wire-shaped symmetric supercapacitors provided a specific capacitance of 4.67 F/cm3 with good cycling stability at a current density of 0.6 A/cm3.
基金This work was supported by the National Natural Science Foundation of China(Grant 22122408)the National Key R&D Program of China(2022YFA1104802).
文摘In vivo monitoring of bioelectrical and biochemical signals with implanted electrodes has received great interest over the past decades.However,this faces huge challenges because of the severe mechanical mismatch between conventional rigid electrodes and soft biological tissues.In recent years,the emergence of flexible and stretchable electrodes offers seamless and conformable biological-electronic interfaces and has demonstrated significant advantages for in vivo electrochemical and electrophysiological monitoring.This review first summarizes the strategies for electrode fabrication from the point of substrate and conductive materials.Next,recent progress in electrode functionalization for improved performance is presented.Then,the advances of flexible and stretchable electrodes in exploring bioelectrical and biochemical signals are introduced.Finally,we present some challenges and perspectives ranging from electrode fabrication to application.
基金support by the National Natural Science Foundation of China(No.42107226)Intergovernmental International Cooperation on Scientific and Technological Innovation(No.2023YFE0122500)Open Project of State Key Laboratory of Urban Water Resource and Environment,Harbin Institute of Technology(No.ES202223).
文摘The advancement of energy storage technology has paved the way for the application of electrochemi-cal processes in achieving low-carbon and precise environmental pollution reduction.Electrodes play a crucial role in efficiently removing organic pollutants and heavy metals.To implement electrochemical pollution control technology in practical engineering,flexible electrode preparation is vital.This review highlights recent progress in flexible electrode research,focusing on the selection and structural design of flexible electrode materials.It summarizes the latest advancements in current collectors,active mate-rials,and preparation methods to enhance conductivity,flexibility,and cycle stability.The application of flexible electrodes in water pollution control is categorized into three aspects:Organic pollutants,inor-ganic pollutants,and composite pollutants.Finally,the challenges and research requirements for enhanc-ing electrode flexibility in environmental governance are discussed,along with prospects for their future applications.
基金supported by National Key R&D Program of China (2016YFB0100500)Special fund of key technology research and development projects (20180201097GX)(20180201099GX)(20180201096GX),Jilin province science and technology department+5 种基金The R&D Program of power batteries with low temperature and high energy,Science and Technology Bureau of Changchun (19SS013)Key Subject Construction of Physical Chemistry of Northeast Normal UniversityGeneral Financial Grant from the China Postdoctoral Science Foundation (Grant 2016M601363)Fundamental Research Funds for the Central Universities (Grant 2412017QD011)Jilin Scientific and Technological Development Program (Grant 20180520143JH)National Natural Science Foundation of China (Grant 21805030)。
文摘Conventional Li-O2 battery is hardly considered as a next-generation flexible electronics thus far,since it is inflexible,bulk,and limited by the absence of the adjustable cell configuration.Here,we report a binder-free and flexible electrode of x wt%MoO2 NPs/CTs(x=6,16,and 28).A cell with 16 wt% MoO2 NPs/CTs displays a good cyclability over 240 cycles with a low overpotential of 0.33 V on the 1st cycle at a constant current density of 0.2 mA cm-2,a considerable rate performance,a superior reversibility associated with the desired formation and degradation of Li2O2,and a high electrochemical stability even under stringent bending and twisting conditions.Our work represents a promising progress in the material development and architecture design of O2 electrode for flexible Li-O2 batteries.
基金the National Key R&D Program of China under Project 2019YFA0705104.
文摘Flexible batteries are key component of wearable electronic devices.Based on the requirements of medical and primary safety of wearable energy storage devices,rechargeable aqueous zinc ion batteries(ZIBs)are promising portable candidates in virtue of its intrinsic safety,abundant storage and low cost.However,many inherent challenges have greatly hindered the development in flexible Zn-based energy storage devices,such as rigid current collector and/or metal anode,easily detached cathode materials and a relatively narrow voltage window of flexible electrolyte.Thus,overcoming these challenges and further developing flexible ZIBs are inevitable and imperative.This review summarizes the most advanced progress in designs and discusses of flexible electrode,electrolyte and the practical application of flexible ZIBs in different environments.We also exhibit the heart of the matter that current flexible ZIBs faces.Finally,some prospective approaches are proposed to address these key issues and point out the direction for the future development of flexible ZIBs.
基金financial support from the National Natural Science Foundation of China(Nos.52020105010,51927803,51525206)the National Key R&D Program of China(2016YFA0200102 and 2016YFB0100100)+1 种基金the Strategic Priority Research Program of the Chinese Academy of Sciences(XDA22010602)the LiaoNing Revitalization Talents Program(No.XLYC1908015)。
文摘Flexible lithium-ion batteries(LIBs)are critical for the development of next-generation smart electronics.Conversion reaction-based electrodes have been considered promising to construct high energy-density flexible LIBs,which satisfy the ever-increasing demand for practical use.However,these electrodes suffer from inferior lithium-storage performance and structural instability during deformation and long-term lithiation/delithiation.These are caused by the sluggish reaction kinetics of active-materials and the superposition of responsive strains originating from the large lithiation-induced stress and applied stress.Here,we propose a stress-release strategy through elastic responses of nested wrinkle texturing of graphene,to achieve high deformability while maintaining structural integrity upon prolonged cycles within high-capacity electrodes.The wrinkles endow the electrode with a robust and flexible network for effective stress release.The resulting electrode shows large reversible stretchability,along with excellent electrochemical performance including high specific capacity,high-rate capability and long-term cycling stability.This strategy offers a new way to obtain high-performance flexible electrodes and can be extended to other energy-storage devices.