The present paper follows our previous work in which a coupling approach of smoothed particle hydrodynamics (SPH) and element bending group (EBG) was developed for modeling the interaction of viscous incompressibl...The present paper follows our previous work in which a coupling approach of smoothed particle hydrodynamics (SPH) and element bending group (EBG) was developed for modeling the interaction of viscous incompressible flows with flexible fibers. It was also shown that a flexible object may experience drag reduction because of its reconfiguration due to fluid force on it. However, the reconfiguration of deformable bodies does not always result in drag reduction as different deformation patterns can result in different drag scales. In the present work, we studied the bending modes of a flexible fiber in viscous flows using the presented SPH and EBG coupling approach. The flexible fiber is immersed in a fluid and is tethered at its center point, while the two ends of the fiber are free to move. We showed that the fiber undergoes four different bending modes: stable U-shape, slight swing, violent flapping, and stable closure modes. We found there is a transition criterion for the flexible fiber from slight swing, suddenly to violent flapping. We defined a bending number to characterize the bending dynamics of the interaction of flexible fiber with viscous fluid and revealed that this bending number is relevant to the non-dimensional fiber length. We also identified the critical bending number from slight swing mode to violent flapping mode.展开更多
Flexible carbon fiber cloth(CFC)is an important scaffold and/or current collector for active materials in the development of flexible self-supportive electrode materials(SSEMs),especially in lithium-ion batteries.Howe...Flexible carbon fiber cloth(CFC)is an important scaffold and/or current collector for active materials in the development of flexible self-supportive electrode materials(SSEMs),especially in lithium-ion batteries.However,during the intercalation of Li ions into the matrix of CFC(below 0.5 V vs.Li/Li+),the incompatibility in the capacity of the CFC,when used directly as an anode material or as a current collector for active materials,leads to difficulty in the estimation of its actual contribution.To address this issue,we prepared Ni_(5)P_(4)nanosheets on CFC(denoted CFC@Ni_(5)P_(4))and investigated the contribution of CFC in the CFC@Ni_(5)P_(4)by comparing to the powder Ni_(5)P_(4)nanosheets traditionally coated on a copper foil(CuF)(denoted P-Ni_(5)P_(4)).At a current density of 0.4 mA cm^(−2),the as-prepared CFC@Ni_(5)P_(4)showed an areal capacity of 7.38 mAh cm^(−2),which is significantly higher than that of the PNi_(5)P_(4)electrode.More importantly,theoretical studies revealed that the CFC has a high Li adsorption energy that contributes to the low Li-ion diffusion energy barrier of the Ni_(5)P_(4)due to the strong interaction between the CFC and Ni_(5)P_(4),leading to the superior Li-ion storage performance of the CFC@Ni_(5)P_(4)over the pristine Ni_(5)P_(4)sample.This present work unveils the underlying mechanism leading to the achievement of high performance in SSEMs.展开更多
Flexible light-emitting fibers and fabrics serve to bridge human–machine interactions. The desire for practical applications and the commercialization of flexible light-emitting fibers has accelerated structural prog...Flexible light-emitting fibers and fabrics serve to bridge human–machine interactions. The desire for practical applications and the commercialization of flexible light-emitting fibers has accelerated structural progress and improvements. This review focuses on the structural design of light-emitting fibers and fabrics, starting with a summary of design principles, emission mechanisms, and structural evolution of coaxial structured light-emitting fibers. Subsequently, we explore recent advances in the helical structure design strategies that boost the mechanical sensitivity of light-emitting fibers. Following that, we analyze continuous preparation processes and the development of large-area intelligent light-emitting fabrics based on interwoven structures. Examples based on stiff and rigid inorganic-based lightemitting diodes integrated into flexible systems are also presented. Finally, we discuss the current challenges and future opportunities for light-emitting applications in the field of wearable and smart devices.展开更多
A new method for characterizing fiber bending flexibility was developed by worm-like chain model proposed by Kratky-Porod,[1]which was first introduced to the pulp and paper field in this study.For the three types of ...A new method for characterizing fiber bending flexibility was developed by worm-like chain model proposed by Kratky-Porod,[1]which was first introduced to the pulp and paper field in this study.For the three types of pulps,the experimental results were compared with the KP chain model,and the resulting determination coefficients were all above 0.95,which proved that the model was feasible to be applied to these three fibers.The relation between fiber bending rigidity and that of cellulosic chains inside was discussed to deduce the fiber bending flexibility.The flexibility of an individual fiber can be approximated as the contribution of that of all the cellulose chains inside.By this method,the fiber flexibility values were determined to be in the range of 0.6×10^(11)-3.5×10^(11)N^(-1)·m^(-2),which was comparable to that of the conventional methods recorded in the literature.展开更多
基金Project supported by the National Natural Science Foundation of China(Grant Nos.11302237,11172306 and U1530110)
文摘The present paper follows our previous work in which a coupling approach of smoothed particle hydrodynamics (SPH) and element bending group (EBG) was developed for modeling the interaction of viscous incompressible flows with flexible fibers. It was also shown that a flexible object may experience drag reduction because of its reconfiguration due to fluid force on it. However, the reconfiguration of deformable bodies does not always result in drag reduction as different deformation patterns can result in different drag scales. In the present work, we studied the bending modes of a flexible fiber in viscous flows using the presented SPH and EBG coupling approach. The flexible fiber is immersed in a fluid and is tethered at its center point, while the two ends of the fiber are free to move. We showed that the fiber undergoes four different bending modes: stable U-shape, slight swing, violent flapping, and stable closure modes. We found there is a transition criterion for the flexible fiber from slight swing, suddenly to violent flapping. We defined a bending number to characterize the bending dynamics of the interaction of flexible fiber with viscous fluid and revealed that this bending number is relevant to the non-dimensional fiber length. We also identified the critical bending number from slight swing mode to violent flapping mode.
基金National Natural Science Foundation of China,Grant/Award Numbers:21875292,21902188National Key Research and Development Program of China,Grant/Award Number:2019YFA0705702+2 种基金Hunan Provincial Natural Science Foundation,Grant/Award Number:2021JJ30087Natural Science Foundation of Guangdong Province,Grant/Award Number:2020A1515010798Hunan Joint International Laboratory of Advanced Materials and Technology for Clean Energy,Grant/Award Number:2020CB1007。
文摘Flexible carbon fiber cloth(CFC)is an important scaffold and/or current collector for active materials in the development of flexible self-supportive electrode materials(SSEMs),especially in lithium-ion batteries.However,during the intercalation of Li ions into the matrix of CFC(below 0.5 V vs.Li/Li+),the incompatibility in the capacity of the CFC,when used directly as an anode material or as a current collector for active materials,leads to difficulty in the estimation of its actual contribution.To address this issue,we prepared Ni_(5)P_(4)nanosheets on CFC(denoted CFC@Ni_(5)P_(4))and investigated the contribution of CFC in the CFC@Ni_(5)P_(4)by comparing to the powder Ni_(5)P_(4)nanosheets traditionally coated on a copper foil(CuF)(denoted P-Ni_(5)P_(4)).At a current density of 0.4 mA cm^(−2),the as-prepared CFC@Ni_(5)P_(4)showed an areal capacity of 7.38 mAh cm^(−2),which is significantly higher than that of the PNi_(5)P_(4)electrode.More importantly,theoretical studies revealed that the CFC has a high Li adsorption energy that contributes to the low Li-ion diffusion energy barrier of the Ni_(5)P_(4)due to the strong interaction between the CFC and Ni_(5)P_(4),leading to the superior Li-ion storage performance of the CFC@Ni_(5)P_(4)over the pristine Ni_(5)P_(4)sample.This present work unveils the underlying mechanism leading to the achievement of high performance in SSEMs.
基金supported by the National Key Research and Development Program of China (2021YFA1201301, 2021YFA1201300)the National Natural Science Foundation of China (52273031, 52202167, 52103075)+5 种基金the China Postdoctoral Science Foundation (2022M710664 and 2022T150111)the Fundamental Research Funds for the Central Universities (2232024Y-01)the Fundamental Research Funds for the Central Universitiesthe Fundamental Research Funds for the Central Universities (CUSFDH-T-2023037)the “DHU” Distinguished Young Professor Program (LZB2021001)State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, Donghua University。
文摘Flexible light-emitting fibers and fabrics serve to bridge human–machine interactions. The desire for practical applications and the commercialization of flexible light-emitting fibers has accelerated structural progress and improvements. This review focuses on the structural design of light-emitting fibers and fabrics, starting with a summary of design principles, emission mechanisms, and structural evolution of coaxial structured light-emitting fibers. Subsequently, we explore recent advances in the helical structure design strategies that boost the mechanical sensitivity of light-emitting fibers. Following that, we analyze continuous preparation processes and the development of large-area intelligent light-emitting fabrics based on interwoven structures. Examples based on stiff and rigid inorganic-based lightemitting diodes integrated into flexible systems are also presented. Finally, we discuss the current challenges and future opportunities for light-emitting applications in the field of wearable and smart devices.
基金financially supported by the National Natural Science Foundation of China (No. 21534002)National Key R&D Program of China (No. 2019YFC1520402)
文摘A new method for characterizing fiber bending flexibility was developed by worm-like chain model proposed by Kratky-Porod,[1]which was first introduced to the pulp and paper field in this study.For the three types of pulps,the experimental results were compared with the KP chain model,and the resulting determination coefficients were all above 0.95,which proved that the model was feasible to be applied to these three fibers.The relation between fiber bending rigidity and that of cellulosic chains inside was discussed to deduce the fiber bending flexibility.The flexibility of an individual fiber can be approximated as the contribution of that of all the cellulose chains inside.By this method,the fiber flexibility values were determined to be in the range of 0.6×10^(11)-3.5×10^(11)N^(-1)·m^(-2),which was comparable to that of the conventional methods recorded in the literature.
基金supported by the National Key Research and Development Program of China(2021YFE0105700)the National Natural Science Foundation of China(52302177 and 51972118)the Local Innovative and Research Teams Project of Guangdong Pearl River Talents Program(2017BT01X137)。