期刊文献+
共找到6篇文章
< 1 >
每页显示 20 50 100
Flexible Biofoams Based on Furanics and Fatty Acids Esterified Tannin
1
作者 Elham Azadeh Ummi Hani Abdullah +3 位作者 Christine Gerardin Antonio Pizzi Philippe Gerardin Cesar Segovia 《Journal of Renewable Materials》 EI 2023年第10期3625-3645,共21页
Water repellant,flexible biofoams using tannin esterified with various fatty acid chains,namely lauric,palmitic and oleic acids,by reaction with lauryl chloride,palmitoyl chloride,and oleyl chloride were developed and... Water repellant,flexible biofoams using tannin esterified with various fatty acid chains,namely lauric,palmitic and oleic acids,by reaction with lauryl chloride,palmitoyl chloride,and oleyl chloride were developed and their characteristics compared with the equivalently esterified rigid biofoams.Glycerol,while initially added to control the reaction temperature,was used as a plasticizer yielding flexible biofoams presenting the same water repellant character that the equivalent rigid foams.Acetaldehyde was used as the cross-linking agent instead of formaldehyde,as it showed a better performance with the esterified tannin.The compression results showed a significant decrease of the Modulus of Elasticity(MOE)of the flexible foams in relation to that of the rigid foams,confirming their flexible character.The lauryl-and palmitoyl-esterified biofoams presented similar mechanical properties,while the oleyl-esterified biofoam presented different mechanical and morphological result not really showing the expected flexibility.Both the esterified rigid and flexible tannin-based biofoams showed good water resistance and their sessile drop contact angle analysis as a function of time confirmed this characteristic.Scanning Electron Microscope(SEM)analysis showed the flexible foams to present a higher proportion of closed cells than the rigid foams.Conversely,the cells depth of the flexible foams was lower than that of the rigid foam.As regards their thermal resistance,the flexible foams showed a slight loss of mass compared to the rigid ones without glycerol.Both types of foams presented much lower surface friability of non-esterified rigid foams. 展开更多
关键词 flexible tannin-furanic foams esterified tannins water repellence TGA SEM compression
下载PDF
Stress and buckling analysis of a thick-walled micro sandwich panel with a flexible foam core and carbon nanotube reinforced composite (CNTRC) face sheets 被引量:2
2
作者 A.AMIRI M.MOHAMMADIMEHR M.ANVARI 《Applied Mathematics and Mechanics(English Edition)》 SCIE EI CSCD 2020年第7期1027-1038,共12页
In this paper,the stresses and buckling behaviors of a thick-walled mi-cro sandwich panel with a flexible foam core and carbon nanotube reinforced composite(CNTRC)face sheets are considered based on the high-order she... In this paper,the stresses and buckling behaviors of a thick-walled mi-cro sandwich panel with a flexible foam core and carbon nanotube reinforced composite(CNTRC)face sheets are considered based on the high-order shear deformation theory(HSDT)and the modified couple stress theory(MCST).The governing equations of equi-librium are obtained based on the total potential energy principle.The effects of various parameters such as the aspect ratio,elastic foundation,temperature changes,and volume fraction of the canbon nanotubes(CNTs)on the critical buckling loads,normal stress,shear stress,and deflection of the thick-walled micro cylindrical sandwich panel consider-ing different distributions of CNTs are examined.The results are compared and validated with other studies,and showing an excellent compatibility.CNTs have become very use-ful and common candidates in sandwich structures,and they have been extensively used in many applications including nanotechnology,aerospace,and micro-structures.This paper also extends further applications of reinforced sandwich panels by providing the modified equations and formulae. 展开更多
关键词 stress and buckling analysis thick-walled micro cylindrical sandwich panel flexible foam core carbon nanotube reinforced composite(CNTRC)face sheet high-order shear deformation theory(HSDT)
下载PDF
Improving the Sound Absorption Properties of Flexible Polyurethane (PU) Foam using Nanofibers and Nanoparticles 被引量:1
3
作者 Roohalah Hajizadeh Ali Khavanin +2 位作者 Mohammad Barmar Ahmad Jonidi Jafari Somayeh Farhang Dehghan 《Sound & Vibration》 2019年第5期207-222,共16页
Polyurethane foam as the most well-known absorbent materials has a suitable absorption coefficient only within a limited frequency range.The aim of this study was to improve the sound absorption coefficient of flexibl... Polyurethane foam as the most well-known absorbent materials has a suitable absorption coefficient only within a limited frequency range.The aim of this study was to improve the sound absorption coefficient of flexible polyurethane(PU)foam within the range of various frequencies using clay nanoparticles,polyacrylonitrile nanofibers,and polyvinylidene fluoride nanofibers.The response surface method was used to determine the effect of addition of nanofibers of PAN and PVDF,addition of clay nanoparticles,absorbent thickness,and air gap on the sound absorption coefficient of flexible polyurethane foam(PU)across different frequency ranges.The absorption coefficient of the samples was measured using Impedance Tubes device.Nano clay at low thicknesses as well as polyacrylonitrile nanofibers and polyvinyl fluoride nanofibers at higher thicknesses had a greater positive effect on absorption coefficient.The mean sound absorption coefficient in the composite with the highest absorption coefficient at middle and high frequencies was 0.798 and 0.75,respectively.In comparison with pure polyurethane foam with the same thickness and air gap,these values were 2.22 times at the middle frequencies and 1.47 times at high frequencies,respectively.Surface porosity rose with increasing nano clay,but decreased with increasing polyacrylonitrile nanofibers and polyvinyl fluoride nanofibers.The results indicated that the absorption coefficient was elevated with increasing the thickness and air gap.This study suggests that the use of a combination of nanoparticles and nanofibers can enhance the acoustic properties of flexible polyurethane foam. 展开更多
关键词 Sound absorption coefficient flexible polyurethane foam nano clay polyacrylonitrile nanofibers polyvinyl fluoride nanofibers
下载PDF
Cushioning Performance of a Novel Polyurethane Foam Material Applied in Fragile Packaging 被引量:1
4
作者 Huifeng Xi Chunqiu Guo +4 位作者 Jinbiao Yang Xiaogang Wang Bowei Wang Shiqing Huang Zhiwei Wang 《Acta Mechanica Solida Sinica》 SCIE EI CSCD 2024年第3期487-497,共11页
For fragile products,packaging requires cushioning protection to prevent irreversible damage from accidental falls,transportation impacts,and other causes.The new polyurethane foam(PUF)material demonstrates superior c... For fragile products,packaging requires cushioning protection to prevent irreversible damage from accidental falls,transportation impacts,and other causes.The new polyurethane foam(PUF)material demonstrates superior cushioning and vibration isolation performance in practical applications,effectively minimizing damage from vibrations.Drop and vibration experiments were conducted on packages comprising novel PUF,expandable polyethylene,ethylene-vinyl acetate copolymer foam,and bracelets.Results verify that the new PUF material outperforms in cushioning and vibration isolation,as observed from the acceleration response.Furthermore,a random vibration analysis of a packaging unit involving different thicknesses of PUF materials and bracelets reveals the enhanced vibration isolation effect within a specific thickness range.The vibration results of the bracelet’s outer packaging align closely with finite element simulation results,validating the effectiveness of designing and optimizing the outer packaging.Through finite element simulation,deeper understanding and prediction of the bracelet’s vibration response under various conditions is achieved,facilitating optimized packaging design for better protection and vibration damping. 展开更多
关键词 flexible polyurethane foam Packaging of fragile goods Nonlinear dynamics Vibration frequency Finite element simulation
原文传递
Exceptionally flame-retardant flexible polyurethane foam composites:synergistic effect of the silicone resin/graphene oxide coating 被引量:2
5
作者 Qian Wu Jincheng Zhang +7 位作者 Shengpeng Wang Bajin Chen Yijun Feng Yongbing Pei Yue Yan Longcheng Tang Huayu Qiu Lianbin Wu 《Frontiers of Chemical Science and Engineering》 SCIE EI CAS CSCD 2021年第4期969-983,共15页
A facile strategy was developed to fabricate flexible polyurethane(PU)foam composites with exceptional flame retardancy.The approach involves the incorporation of graphene oxide(GO)into a silicone resin(SiR)solution,w... A facile strategy was developed to fabricate flexible polyurethane(PU)foam composites with exceptional flame retardancy.The approach involves the incorporation of graphene oxide(GO)into a silicone resin(SiR)solution,which is then deposited onto a PU foam surface via the dip-coating technique and cured.Fourier-transform infrared spectroscopy,scanning electron microscopy,and Raman spectroscopy measurements demonstrated that the SiR and GO were successfully coated onto the PU skeleton and the intrinsic porous structure of the PU foam remained intact.The effects of SiR and GO on the mechanical and thermal stability and flame retardancy of PU composites were evaluated through compression tests,thermogravimetric analysis,vertical combustion tests,and the limiting oxygen index.The measurement results revealed that the composites(PU@SiR-GO)showed superior flame retardancy and thermal and mechanical stability compared to pristine PU or PU coated with SiR alone.The mechanical and thermal stability and the flame-retardant properties of the PU composites were enhanced significantly with increasing GO content.Based on the composition,microstructure,and surface morphology of PU@SiR-GO composites before and after combustion tests,a possible flame-retardance mechanism is proposed.This work provides a simple and effective strategy for fabricating flame retardant composites with improved mechanical performance. 展开更多
关键词 flame retardancy flexible polyurethane foam graphene oxide silicone resin
原文传递
Damping of Pressure Pulsations in Mobile Hydraulic Applications by the Use of Closed Cell Cellular Rubbers Integrated into a Vane Pump
6
作者 David Bach Tom Masselter Thomas Speck 《Journal of Bionic Engineering》 SCIE EI CSCD 2017年第4期791-803,共13页
The present study evaluates the potential of a bio-inspired pulsation damper in a vane pump used in mobile hydraulic ap- plications. Pressure pulsations caused by such positive displacement pumps can lead to malfuncti... The present study evaluates the potential of a bio-inspired pulsation damper in a vane pump used in mobile hydraulic ap- plications. Pressure pulsations caused by such positive displacement pumps can lead to malfunctions and noise in a hydraulic system. A common measure to reduce pressure pulsations is the integration of pressure pulsation dampers downstream of the pump. This type of damping measure can also be found in biology as e.g. in the human blood circulatory system. Such working principles found in living organisms offer a high potential for a biomimetic transfer into technical applications. The newly developed bio-inspired damper consists of cellular rubbers with non-linear viscoelastic material properties. In order to evaluate the new damping method, pressure pulsations were measured at two different back pressures and at a wide engine speed range of the vane pump. For further assessment, different setups, varying the stiffness of the cellular rubber materials and the damper volume, were tested. Within the tested back pressures, the pressure pulsations could be reduced by up to 40%. The developed integrated pulsation damper offers a high potential to dampen pressure pulsations of positive displacement pumps used in mobile hydraulic applications ooeratin~ below 10 bar. 展开更多
关键词 pressure pulsations pressure ripple vane pump bio-inspired pulsation damping cellular rubbers flexible foams
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部