期刊文献+
共找到43,305篇文章
< 1 2 250 >
每页显示 20 50 100
Flexible Graphene Field‑Effect Transistors and Their Application in Flexible Biomedical Sensing
1
作者 Mingyuan Sun Shuai Wang +5 位作者 Yanbo Liang Chao Wang Yunhong Zhang Hong Liu Yu Zhang Lin Han 《Nano-Micro Letters》 SCIE EI CAS 2025年第2期252-313,共62页
Flexible electronics are transforming our lives by making daily activities more convenient.Central to this innovation are field-effect transistors(FETs),valued for their efficient signal processing,nanoscale fabricati... Flexible electronics are transforming our lives by making daily activities more convenient.Central to this innovation are field-effect transistors(FETs),valued for their efficient signal processing,nanoscale fabrication,low-power consumption,fast response times,and versatility.Graphene,known for its exceptional mechanical properties,high electron mobility,and biocompatibility,is an ideal material for FET channels and sensors.The combination of graphene and FETs has given rise to flexible graphene field-effect transistors(FGFETs),driving significant advances in flexible electronics and sparked a strong interest in flexible biomedical sensors.Here,we first provide a brief overview of the basic structure,operating mechanism,and evaluation parameters of FGFETs,and delve into their material selection and patterning techniques.The ability of FGFETs to sense strains and biomolecular charges opens up diverse application possibilities.We specifically analyze the latest strategies for integrating FGFETs into wearable and implantable flexible biomedical sensors,focusing on the key aspects of constructing high-quality flexible biomedical sensors.Finally,we discuss the current challenges and prospects of FGFETs and their applications in biomedical sensors.This review will provide valuable insights and inspiration for ongoing research to improve the quality of FGFETs and broaden their application prospects in flexible biomedical sensing. 展开更多
关键词 flexible GRAPHENE Field-effect transistor Wearable IMPLANTABLE BIOSENSOR
下载PDF
An Artificial Intelligence‑Assisted Flexible and Wearable Mechanoluminescent Strain Sensor System
2
作者 Yan Dong Wenzheng An +1 位作者 Zihu Wang Dongzhi Zhang 《Nano-Micro Letters》 SCIE EI CAS 2025年第3期217-231,共15页
The complex wiring,bulky data collection devices,and difficulty in fast and on-site data interpretation significantly limit the practical application of flexible strain sensors as wearable devices.To tackle these chal... The complex wiring,bulky data collection devices,and difficulty in fast and on-site data interpretation significantly limit the practical application of flexible strain sensors as wearable devices.To tackle these challenges,this work develops an artificial intelligenceassisted,wireless,flexible,and wearable mechanoluminescent strain sensor system(AIFWMLS)by integration of deep learning neural network-based color data processing system(CDPS)with a sandwich-structured flexible mechanoluminescent sensor(SFLC)film.The SFLC film shows remarkable and robust mechanoluminescent performance with a simple structure for easy fabrication.The CDPS system can rapidly and accurately extract and interpret the color of the SFLC film to strain values with auto-correction of errors caused by the varying color temperature,which significantly improves the accuracy of the predicted strain.A smart glove mechanoluminescent sensor system demonstrates the great potential of the AIFWMLS system in human gesture recognition.Moreover,the versatile SFLC film can also serve as a encryption device.The integration of deep learning neural network-based artificial intelligence and SFLC film provides a promising strategy to break the“color to strain value”bottleneck that hinders the practical application of flexible colorimetric strain sensors,which could promote the development of wearable and flexible strain sensors from laboratory research to consumer markets. 展开更多
关键词 Mechanoluminescent Strain sensor flexible Deep learning WIRELESS
下载PDF
Flexible Strain Sensors with Ultra‑High Sensitivity and Wide Range Enabled by Crack‑Modulated Electrical Pathways
3
作者 Yunzhao Bai Yunlei Zhou +6 位作者 Xuanyu Wu Mengfei Yin Liting Yin Shiyuan Qu Fan Zhang Kan Li YongAn Huang 《Nano-Micro Letters》 SCIE EI CAS 2025年第3期246-264,共19页
This study presents a breakthrough in flexible strain sensor technology with the development of an ultrahigh sensitivity and wide-range sensor,addressing the critical challenge of reconciling sensitivity with measurem... This study presents a breakthrough in flexible strain sensor technology with the development of an ultrahigh sensitivity and wide-range sensor,addressing the critical challenge of reconciling sensitivity with measurement range.Inspired by the structure of bamboo slips,we introduce a novel approach that utilises liquid metal to modulate the electrical pathways within a cracked platinum fabric electrode.The resulting sensor demonstrates a gauge factor greater than 108 and a strain measurement capability exceeding 100%.The integration of patterned liquid metal enables customisable tuning of the sensor’s response,while the porous fabric structure ensures superior comfort and air permeability for the wearer.Our design not only optimises the sensor’s performance but also enhances the electrical stability that is essential for practical applications.Through systematic investigation,we reveal the intrinsic mechanisms governing the sensor’s response,offering valuable insights for the design of wearable strain sensors.The sensor’s exceptional performance across a spectrum of applications,from micro-strain to large-strain detection,highlights its potential for a wide range of real-world uses,demonstrating a significant advancement in the field of flexible electronics. 展开更多
关键词 flexible strain sensor FABRIC CRACK Response regulation Epidermal device
下载PDF
Bioinspired Ultrasensitive Flexible Strain Sensors for Real‑Time Wireless Detection of Liquid Leakage
4
作者 Weilong Zhou Yu Du +6 位作者 Yingying Chen Congyuan Zhang Xiaowei Ning Heng Xie Ting Wu Jinlian Hu Jinping Qu 《Nano-Micro Letters》 SCIE EI CAS 2025年第3期310-327,共18页
Liquid leakage of pipeline networks not only results in considerableresource wastage but also leads to environmental pollution and ecological imbalance.In response to this global issue, a bioinspired superhydrophobic ... Liquid leakage of pipeline networks not only results in considerableresource wastage but also leads to environmental pollution and ecological imbalance.In response to this global issue, a bioinspired superhydrophobic thermoplastic polyurethane/carbon nanotubes/graphene nanosheets flexible strain sensor (TCGS) hasbeen developed using a combination of micro-extrusion compression molding andsurface modification for real-time wireless detection of liquid leakage. The TCGSutilizes the synergistic effects of Archimedean spiral crack arrays and micropores,which are inspired by the remarkable sensory capabilities of scorpions. This designachieves a sensitivity of 218.13 at a strain of 2%, which is an increase of 4300%. Additionally, it demonstrates exceptional durability bywithstanding over 5000 usage cycles. The robust superhydrophobicity of the TCGS significantly enhances sensitivity and stability indetecting small-scale liquid leakage, enabling precise monitoring of liquid leakage across a wide range of sizes, velocities, and compositionswhile issuing prompt alerts. This provides critical early warnings for both industrial pipelines and potential liquid leakage scenariosin everyday life. The development and utilization of bioinspired ultrasensitive flexible strain sensors offer an innovative and effectivesolution for the early wireless detection of liquid leakage. 展开更多
关键词 Thermoplastic polyurethane BIOINSPIRED Cracks Liquid leakage flexible strain sensor
下载PDF
Low‑Temperature Fabrication of Stable Black‑Phase CsPbI_(3)Perovskite Flexible Photodetectors Toward Wearable Health Monitoring
5
作者 Yingjie Zhao Yicheng Sun +8 位作者 Chaoxin Pei Xing Yin Xinyi Li Yi Hao Mengru Zhang Meng Yuan Jinglin Zhou Yu Chen Yanlin Song 《Nano-Micro Letters》 SCIE EI CAS 2025年第3期232-245,共14页
Flexible wearable optoelectronic devices fabricated fromorganic–inorganic hybrid perovskites significantly accelerate the developmentof portable energy,biomedicine,and sensing fields,but their poor thermal stabilityh... Flexible wearable optoelectronic devices fabricated fromorganic–inorganic hybrid perovskites significantly accelerate the developmentof portable energy,biomedicine,and sensing fields,but their poor thermal stabilityhinders further applications.Conversely,all-inorganic perovskites possessexcellent thermal stability,but black-phase all-inorganic perovskite filmusually requires high-temperature annealing steps,which increases energy consumptionand is not conducive to the fabrication of flexible wearable devices.In this work,an unprecedented low-temperature fabrication of stable blackphaseCsPbI3perovskite films is demonstrated by the in situ hydrolysis reactionof diphenylphosphinic chloride additive.The released diphenyl phosphateand chloride ions during the hydrolysis reaction significantly lower the phasetransition temperature and effectively passivate the defects in the perovskitefilms,yielding high-performance photodetectors with a responsivity of 42.1 AW−1 and a detectivity of 1.3×10^(14)Jones.Furthermore,high-fidelity imageand photoplethysmography sensors are demonstrated based on the fabricated flexible wearable photodetectors.This work provides a newperspective for the low-temperature fabrication of large-area all-inorganic perovskite flexible optoelectronic devices. 展开更多
关键词 In situ hydrolyzation Low-temperature processing All-inorganic perovskite flexible photodetectors Health monitoring
下载PDF
Force and impulse multi-sensor based on flexible gate dielectric field effect transistor
6
作者 Chao Tan Junling Lü +3 位作者 Chunchi Zhang Dong Liang Lei Yang Zegao Wang 《International Journal of Minerals,Metallurgy and Materials》 SCIE EI CAS 2025年第1期214-220,共7页
Nowadays,force sensors play an important role in industrial production,electronic information,medical health,and many other fields.Two-dimensional material-based filed effect transistor(2D-FET)sensors are competitive ... Nowadays,force sensors play an important role in industrial production,electronic information,medical health,and many other fields.Two-dimensional material-based filed effect transistor(2D-FET)sensors are competitive with nano-level size,lower power consumption,and accurate response.However,few of them has the capability of impulse detection which is a path function,expressing the cumulative effect of the force on the particle over a period of time.Herein we fabricated the flexible polymethyl methacrylate(PMMA)gate dielectric MoS_(2)-FET for force and impulse sensor application.We systematically investigated the responses of the sensor to constant force and varying forces,and achieved the conversion factors of the drain current signals(I_(ds))to the detected impulse(I).The applied force was detected and recorded by I_(ds)with a low power consumption of~30 nW.The sensitivity of the device can reach~8000%and the 4×1 sensor array is able to detect and locate the normal force applied on it.Moreover,there was almost no performance loss for the device as left in the air for two months. 展开更多
关键词 flexible gate dielectric transistor force sensor impulse sensor force sensor array
下载PDF
Wafer‑Scale Vertical 1D GaN Nanorods/2D MoS_(2)/PEDOT:PSS for Piezophototronic Effect‑Enhanced Self‑Powered Flexible Photodetectors
7
作者 Xin Tang Hongsheng Jiang +3 位作者 Zhengliang Lin Xuan Wang Wenliang Wang Guoqiang Li 《Nano-Micro Letters》 SCIE EI CAS 2025年第3期102-116,共15页
van der Waals(vdW)heterostructures constructed by lowdimensional(0D,1D,and 2D)materials are emerging as one of the most appealing systems in next-generation flexible photodetection.Currently,hand-stacked vdW-type phot... van der Waals(vdW)heterostructures constructed by lowdimensional(0D,1D,and 2D)materials are emerging as one of the most appealing systems in next-generation flexible photodetection.Currently,hand-stacked vdW-type photodetectors are not compatible with large-areaarray fabrication and show unimpressive performance in self-powered mode.Herein,vertical 1D GaN nanorods arrays(NRAs)/2D MoS_(2)/PEDOT:PSS in wafer scale have been proposed for self-powered flexible photodetectors arrays firstly.The as-integrated device without external bias under weak UV illumination exhibits a competitive responsivity of 1.47 A W^(−1)and a high detectivity of 1.2×10^(11)Jones,as well as a fast response speed of 54/71μs,thanks to the strong light absorption of GaN NRAs and the efficient photogenerated carrier separation in type-II heterojunction.Notably,the strain-tunable photodetection performances of device have been demonstrated.Impressively,the device at−0.78%strain and zero bias reveals a significantly enhanced photoresponse with a responsivity of 2.47 A W^(−1),a detectivity of 2.6×10^(11)Jones,and response times of 40/45μs,which are superior to the state-of-the-art self-powered flexible photodetectors.This work presents a valuable avenue to prepare tunable vdWs heterostructures for self-powered flexible photodetection,which performs well in flexible sensors. 展开更多
关键词 Vertical nanorod arrays van der Waals heterostructure Piezophototronic effect Self-powered photodetection flexible sensors
下载PDF
Ultra‑Transparent and Multifunctional IZVO Mesh Electrodes for Next‑Generation Flexible Optoelectronics
8
作者 Kiran A.Nirmal Tukaram D.Dongale +3 位作者 Atul C.Khot Chenjie Yao Nahyun Kim Tae Geun Kim 《Nano-Micro Letters》 SCIE EI CAS 2025年第1期293-309,共17页
Mechanically durable transparent electrodes are essential for achieving long-term stability in flexible optoelectronic devices.Furthermore,they are crucial for applications in the fields of energy,display,healthcare,a... Mechanically durable transparent electrodes are essential for achieving long-term stability in flexible optoelectronic devices.Furthermore,they are crucial for applications in the fields of energy,display,healthcare,and soft robotics.Conducting meshes represent a promising alternative to traditional,brittle,metal oxide conductors due to their high electrical conductivity,optical transparency,and enhanced mechanical flexibility.In this paper,we present a simple method for fabricating an ultra-transparent conducting metal oxide mesh electrode using selfcracking-assisted templates.Using this method,we produced an electrode with ultra-transparency(97.39%),high conductance(Rs=21.24Ωsq^(−1)),elevated work function(5.16 eV),and good mechanical stability.We also evaluated the effectiveness of the fabricated electrodes by integrating them into organic photovoltaics,organic light-emitting diodes,and flexible transparent memristor devices for neuromorphic computing,resulting in exceptional device performance.In addition,the unique porous structure of the vanadium-doped indium zinc oxide mesh electrodes provided excellent flexibility,rendering them a promising option for application in flexible optoelectronics. 展开更多
关键词 Self-cracking template Vanadium-doped indium zinc oxide mesh Organic solar cells Organic light-emitting diodes flexible transparent memory
下载PDF
A Flexible Smart Healthcare Platform Conjugated with Artificial Epidermis Assembled by Three‑Dimensionally Conductive MOF Network for Gas and Pressure Sensing
9
作者 Qingqing Zhou Qihang Ding +8 位作者 Zixun Geng Chencheng Hu Long Yang Zitong Kan Biao Dong Miae Won Hongwei Song Lin Xu Jong Seung Kim 《Nano-Micro Letters》 SCIE EI CAS 2025年第2期601-620,共20页
The rising flexible and intelligent electronics greatly facilitate the noninvasive and timely tracking of physiological information in telemedicine healthcare.Meticulously building bionic-sensitive moieties is vital f... The rising flexible and intelligent electronics greatly facilitate the noninvasive and timely tracking of physiological information in telemedicine healthcare.Meticulously building bionic-sensitive moieties is vital for designing efficient electronic skin with advanced cognitive functionalities to pluralistically capture external stimuli.However,realistic mimesis,both in the skin’s three-dimensional interlocked hierarchical structures and synchronous encoding multistimuli information capacities,remains a challenging yet vital need for simplifying the design of flexible logic circuits.Herein,we construct an artificial epidermal device by in situ growing Cu_(3)(HHTP)_(2) particles onto the hollow spherical Ti_(3)C_(2)T_(x) surface,aiming to concurrently emulate the spinous and granular layers of the skin’s epidermis.The bionic Ti_(3)C_(2)T_(x)@Cu_(3)(HHTP)_(2) exhibits independent NO_(2) and pressure response,as well as novel functionalities such as acoustic signature perception and Morse code-encrypted message communication.Ultimately,a wearable alarming system with a mobile application terminal is self-developed by integrating the bimodular senor into flexible printed circuits.This system can assess risk factors related with asthmatic,such as stimulation of external NO_(2) gas,abnormal expiratory behavior and exertion degrees of fingers,achieving a recognition accuracy of 97.6%as assisted by a machine learning algorithm.Our work provides a feasible routine to develop intelligent multifunctional healthcare equipment for burgeoning transformative telemedicine diagnosis. 展开更多
关键词 Ti_(3)C_(2)T_(x)@Cu_(3)(HHTP)_(2)composites NO_(2)/pressure flexible sensors Health-monitoring Machine learning
下载PDF
Artificial Intelligence Meets Flexible Sensors:Emerging Smart Flexible Sensing Systems Driven by Machine Learning and Artificial Synapses 被引量:4
10
作者 Tianming Sun Bin Feng +8 位作者 Jinpeng Huo Yu Xiao Wengan Wang Jin Peng Zehua Li Chengjie Du Wenxian Wang Guisheng Zou Lei Liu 《Nano-Micro Letters》 SCIE EI CAS CSCD 2024年第1期235-273,共39页
The recent wave of the artificial intelligence(AI)revolution has aroused unprecedented interest in the intelligentialize of human society.As an essential component that bridges the physical world and digital signals,f... The recent wave of the artificial intelligence(AI)revolution has aroused unprecedented interest in the intelligentialize of human society.As an essential component that bridges the physical world and digital signals,flexible sensors are evolving from a single sensing element to a smarter system,which is capable of highly efficient acquisition,analysis,and even perception of vast,multifaceted data.While challenging from a manual perspective,the development of intelligent flexible sensing has been remarkably facilitated owing to the rapid advances of brain-inspired AI innovations from both the algorithm(machine learning)and the framework(artificial synapses)level.This review presents the recent progress of the emerging AI-driven,intelligent flexible sensing systems.The basic concept of machine learning and artificial synapses are introduced.The new enabling features induced by the fusion of AI and flexible sensing are comprehensively reviewed,which significantly advances the applications such as flexible sensory systems,soft/humanoid robotics,and human activity monitoring.As two of the most profound innovations in the twenty-first century,the deep incorporation of flexible sensing and AI technology holds tremendous potential for creating a smarter world for human beings. 展开更多
关键词 flexible electronics Wearable electronics Neuromorphic MEMRISTOR Deep learning
下载PDF
An Environment‑Tolerant Ion‑Conducting Double‑Network Composite Hydrogel for High‑Performance Flexible Electronic Devices 被引量:4
11
作者 Wenchao Zhao Haifeng Zhou +3 位作者 Wenkang Li Manlin Chen Min Zhou Long Zhao 《Nano-Micro Letters》 SCIE EI CAS CSCD 2024年第5期352-369,共18页
High-performance ion-conducting hydrogels(ICHs)are vital for developing flexible electronic devices.However,the robustness and ion-conducting behavior of ICHs deteriorate at extreme tempera-tures,hampering their use i... High-performance ion-conducting hydrogels(ICHs)are vital for developing flexible electronic devices.However,the robustness and ion-conducting behavior of ICHs deteriorate at extreme tempera-tures,hampering their use in soft electronics.To resolve these issues,a method involving freeze–thawing and ionizing radiation technology is reported herein for synthesizing a novel double-network(DN)ICH based on a poly(ionic liquid)/MXene/poly(vinyl alcohol)(PMP DN ICH)system.The well-designed ICH exhibits outstanding ionic conductivity(63.89 mS cm^(-1) at 25℃),excellent temperature resistance(-60–80℃),prolonged stability(30 d at ambient temperature),high oxidation resist-ance,remarkable antibacterial activity,decent mechanical performance,and adhesion.Additionally,the ICH performs effectively in a flexible wireless strain sensor,thermal sensor,all-solid-state supercapacitor,and single-electrode triboelectric nanogenerator,thereby highlighting its viability in constructing soft electronic devices.The highly integrated gel structure endows these flexible electronic devices with stable,reliable signal output performance.In particular,the all-solid-state supercapacitor containing the PMP DN ICH electrolyte exhibits a high areal specific capacitance of 253.38 mF cm^(-2)(current density,1 mA cm^(-2))and excellent environmental adaptability.This study paves the way for the design and fabrication of high-performance mul-tifunctional/flexible ICHs for wearable sensing,energy-storage,and energy-harvesting applications. 展开更多
关键词 Ionic liquids Double-network hydrogels Temperature tolerance Multifunctionality flexible electronic devices
下载PDF
Flexible perovskite light-emitting diodes for display applications and beyond 被引量:1
12
作者 Yongqi Zhang Shahbaz Ahmed Khan +1 位作者 Dongxiang Luo Guijun Li 《Journal of Semiconductors》 EI CAS CSCD 2024年第5期8-25,共18页
The flexible perovskite light-emitting diodes(FPeLEDs),which can be expediently integrated to portable and wearable devices,have shown great potential in various applications.The FPeLEDs inherit the unique optical pro... The flexible perovskite light-emitting diodes(FPeLEDs),which can be expediently integrated to portable and wearable devices,have shown great potential in various applications.The FPeLEDs inherit the unique optical properties of metal halide perovskites,such as tunable bandgap,narrow emission linewidth,high photoluminescence quantum yield,and particularly,the soft nature of lattice.At present,substantial efforts have been made for FPeLEDs with encouraging external quantum efficiency(EQE)of 24.5%.Herein,we summarize the recent progress in FPeLEDs,focusing on the strategy developed for perovskite emission layers and flexible electrodes to facilitate the optoelectrical and mechanical performance.In addition,we present relevant applications of FPeLEDs in displays and beyond.Finally,perspective toward the future development and applications of flexible PeLEDs are also discussed. 展开更多
关键词 metal halide perovskite flexible light-emitting diodes optical properties mechanical flexibility DISPLAY
下载PDF
Improved Flexible Triboelectric Nanogenerator Based on Tile-Nanostructure for Wireless Human Health Monitor 被引量:2
13
作者 Huamin Chen Shujun Guo +9 位作者 Shaochun Zhang Yu Xiao Wei Yang Zhaoyang Sun Xu Cai Run Fang Huining Wang Yun Xu Jun Wang Zhou Li 《Energy & Environmental Materials》 SCIE EI CAS CSCD 2024年第4期386-395,共10页
Triboelectric nanogenerators(TENGs)have emerged as promising candidates for integrating with flexible electronics as self-powered systems owing to their intrinsic flexibility,biocompatibility,and miniaturization.In th... Triboelectric nanogenerators(TENGs)have emerged as promising candidates for integrating with flexible electronics as self-powered systems owing to their intrinsic flexibility,biocompatibility,and miniaturization.In this study,an improved flexible TENG with a tile-nanostructured MXene/polymethyl methacrylate(PMMA)composite electrode(MP-TENG)is proposed for use in wireless human health monitor.The multifunctional tile-nanostructured MXene/PMMA film,which is self-assembled through vacuum filtration,exhibits good conductivity,excellent charge capacity,and high flexibility.Thus,the MXene/PMMA composite electrode can simultaneously function as a charge-generating,charge-trapping,and charge-collecting layer.Furthermore,the charge-trapping capacity of a tile nanostructure can be optimized on the basis of the PMMA concentration.At a mass fraction of 4%PMMA,the MP-TENG achieves the optimal output performance,with an output voltage of 37.8 V,an output current of 1.8μA,and transferred charge of 14.1 nC.The output power is enhanced over twofold compared with the pure MXene-based TENG.Moreover,the MP-TENG has sufficient power capacity and durability to power small electronic devices.Finally,a wireless human motion monitor based on the MP-TENG is utilized to detect physiological signals in various kinematic motions.Consequently,the proposed performance-enhanced MP-TENG proves a considerable potential for use in health monitoring,telemedicine,and self-powered systems. 展开更多
关键词 flexible electrode MXene tile nanostructure triboelectric nanogenerator wireless monitor
下载PDF
Highly Flexible Graphene-Film-Based Rectenna for Wireless Energy Harvesting 被引量:1
14
作者 Jingwei Zhang Yuchao Wang +2 位作者 Rongguo Song Zongkui Kou Daping He 《Energy & Environmental Materials》 SCIE EI CAS CSCD 2024年第2期320-325,共6页
Herein,we report the design,fabrication,and performance of two wireless energy harvesting devices based on highly flexible graphene macroscopic films(FGMFs).We first demonstrate that benefiting from the high conductiv... Herein,we report the design,fabrication,and performance of two wireless energy harvesting devices based on highly flexible graphene macroscopic films(FGMFs).We first demonstrate that benefiting from the high conductivity of up to 1×10^(6)S m^(-1)and good resistive stability of FGMFs even under extensive bending,the FGMFs-based rectifying circuit(GRC)exhibits good flexibility and RF-to-DC efficiency of 53%at 2.1 GHz.Moreover,we further expand the application of FGMFs to a flexible wideband monopole rectenna and a 2.45 GHz wearable rectenna for harvesting wireless energy.The wideband rectenna at various bending conditions produces a maximum conversion efficiency of 52%,46%,and 44%at the 5th Generation(5G)2.1 GHz,Industrial Long-Term Evolution(LTE)2.3 GHz,and Scientific Medical(ISM)2.45 GHz,respectively.A 2.45 GHz GRC is optimized and integrated with an AMC-backed wearable antenna.The proposed 2.45 GHz wearable rectenna shows a maximum conversion efficiency of 55.7%.All the results indicate that the highly flexible graphene-film-based rectennas have great potential as a wireless power supplier for smart Internet of Things(loT)applications. 展开更多
关键词 flexible rectennas highly flexible graphene-based films wireless energy harvesting
下载PDF
Manipulating the Macroscopic and Microscopic Morphology of Large-Area Gravure-Printed ZnO Films for High-Performance Flexible Organic Solar Cells 被引量:1
15
作者 Zhenguo Wang Jingbo Guo +6 位作者 Yaqin Pan Jin Fang Chao Gong Lixin Mo Qun Luo Jian Lin Changqi Ma 《Energy & Environmental Materials》 SCIE EI CAS CSCD 2024年第2期229-239,共11页
Gravure printing is a promising large-scale fabrication method for flexible organic solar cells(FOSCs)because it is compatible with two-dimension patternable roll-to-roll fabrication.However,the unsuitable rheological... Gravure printing is a promising large-scale fabrication method for flexible organic solar cells(FOSCs)because it is compatible with two-dimension patternable roll-to-roll fabrication.However,the unsuitable rheological property of ZnO nanoinks resulted in unevenness and looseness of the gravure-printed ZnO interfacial layer.Here we propose a strategy to manipulate the macroscopic and microscopic of the gravure-printed ZnO films through using mixed solvent and poly(vinylpyrrolidone)(PVP)additive.The regulation of drying speed effectively manipulates the droplets fusion and leveling process and eliminates the printing ribbing structure in the macroscopic morphology.The additive of PVP effectively regulates the rheological property and improves the microscopic compactness of the films.Following this method,large-area ZnO∶PVP films(28×9 cm^(2))with excellent uniformity,compactness,conductivity,and bending durability were fabricated.The power conversion efficiencies of FOSCs with gravure-printed AgNWs and ZnO∶PVP films reached 14.34%and 17.07%for the 1 cm^(2)PM6:Y6 and PM6∶L8-BO flexible devices.The efficiency of 17.07%is the highest value to date for the 1 cm^(2)FOSCs.The use of mixed solvent and PVP addition also significantly enlarged the printing window of ZnO ink,ensuring high-quality printed thin films with thicknesses varying from 30 to 100 nm. 展开更多
关键词 flexible organic solar cell gravure printing large-area flexible interfacial layer rheology properties zinc oxide
下载PDF
High-Performance All-Printed Flexible Micro-Supercapacitors with Hierarchical Encapsulation 被引量:1
16
作者 Yuhang Yuan Wei Yuan +10 位作者 Yaopeng Wu Xuyang Wu Xiaoqing Zhang Simin Jiang Bote Zhao Yu Chen Chenghao Yang Liangxin Ding Zhenghua Tang Yingxi Xie Yong Tang 《Energy & Environmental Materials》 SCIE EI CAS CSCD 2024年第4期262-268,共7页
Printed micro-supercapacitors(MSCs)have shown broad prospect in flexible and wearable electronics.Most of previous studies focused on printing the electrochemically active materials paying less attention to other key ... Printed micro-supercapacitors(MSCs)have shown broad prospect in flexible and wearable electronics.Most of previous studies focused on printing the electrochemically active materials paying less attention to other key components like current collectors and electrolytes.This study presents an allprinting strategy to fabricate in-plane flexible and substrate-free MSCs with hierarchical encapsulation.This new type of“all-in-one”MSC is constructed by encapsulating the in-plane interdigital current collectors and electrodes within the polyvinyl-alcohol-based hydrogel electrolyte via sequential printing.The bottom electrolyte layer of this fully printed MSCs helps protect the device from the limitation of conventional substrate,showing excellent flexibility.The MSCs maintain a high capacitance retention of 96.84%even in a completely folded state.An optimal electrochemical performance can be achieved by providing ample and shorter transport paths for ions.The MSCs using commercial activated carbon as the active material are endowed with a high specific areal capacitance of 1892.90 mF cm^(-2)at a current density of 0.3 mA cm^(-2),and an outstanding volumetric energy density of 9.20 mWh cm^(-3)at a volumetric power density of 6.89 mW cm^(-3).For demonstration,a thermo-hygrometer is stably powered by five MSCs which are connected in series and wrapped onto a glass rod.This low-cost and versatile all-printing strategy is believed to diversify the application fields of MSCs with high capacitance and excellent flexibility. 展开更多
关键词 all-printing flexible hierarchical encapsulation micro-supercapacitors substrate-free
下载PDF
Oxygen functionalization-assisted anionic exchange toward unique construction of flower-like transition metal chalcogenide embedded carbon fabric for ultra-long life flexible energy storage and conversion 被引量:1
17
作者 Roshan M.Bhattarai Kisan Chhetri +5 位作者 Nghia Le Debendra Acharya Shirjana Saud Mai Cao Hoang Phuong Lan Nguyen Sang Jae Kim Young Sun Mok 《Carbon Energy》 SCIE EI CAS CSCD 2024年第1期72-93,共22页
The metal-organic framework(MOF)derived Ni–Co–C–N composite alloys(NiCCZ)were“embedded”inside the carbon cloth(CC)strands as opposed to the popular idea of growing them upward to realize ultrastable energy storag... The metal-organic framework(MOF)derived Ni–Co–C–N composite alloys(NiCCZ)were“embedded”inside the carbon cloth(CC)strands as opposed to the popular idea of growing them upward to realize ultrastable energy storage and conversion application.The NiCCZ was then oxygen functionalized,facilitating the next step of stoichiometric sulfur anion diffusion during hydrothermal sulfurization,generating a flower-like metal hydroxysulfide structure(NiCCZOS)with strong partial implantation inside CC.Thus obtained NiCCZOS shows an excellent capacity when tested as a supercapacitor electrode in a three-electrode configuration.Moreover,when paired with the biomass-derived nitrogen-rich activated carbon,the asymmetric supercapacitor device shows almost 100%capacity retention even after 45,000 charge–discharge cycles with remarkable energy density(59.4 Wh kg^(-1)/263.8μWh cm^(–2))owing to a uniquely designed cathode.Furthermore,the same electrode performed as an excellent bifunctional water-splitting electrocatalyst with an overpotential of 271 mV for oxygen evolution reaction(OER)and 168.4 mV for hydrogen evolution reaction(HER)at 10 mA cm−2 current density along with 30 h of unhinged chronopotentiometric stability performance for both HER and OER.Hence,a unique metal chalcogenide composite electrode/substrate configuration has been proposed as a highly stable electrode material for flexible energy storage and conversion applications. 展开更多
关键词 carbon cloth energy conversion energy storage flexible metal embedding ultra-stable
下载PDF
Gel-Based Triboelectric Nanogenerators for Flexible Sensing:Principles,Properties,and Applications 被引量:1
18
作者 Peng Lu Xiaofang Liao +7 位作者 Xiaoyao Guo Chenchen Cai Yanhua Liu Mingchao Chi Guoli Du Zhiting Wei Xiangjiang Meng Shuangxi Nie 《Nano-Micro Letters》 SCIE EI CAS CSCD 2024年第10期257-303,共47页
The rapid development of the Internet of Things and artificial intelligence technologies has increased the need for wearable,portable,and self-powered flexible sensing devices.Triboelectric nanogenerators(TENGs)based ... The rapid development of the Internet of Things and artificial intelligence technologies has increased the need for wearable,portable,and self-powered flexible sensing devices.Triboelectric nanogenerators(TENGs)based on gel materials(with excellent conductivity,mechanical tunability,environmental adaptability,and biocompatibility)are considered an advanced approach for developing a new generation of flexible sensors.This review comprehensively summarizes the recent advances in gel-based TENGs for flexible sensors,covering their principles,properties,and applications.Based on the development requirements for flexible sensors,the working mechanism of gel-based TENGs and the characteristic advantages of gels are introduced.Design strategies for the performance optimization of hydrogel-,organogel-,and aerogel-based TENGs are systematically summarized.In addition,the applications of gel-based TENGs in human motion sensing,tactile sensing,health monitoring,environmental monitoring,human-machine interaction,and other related fields are summarized.Finally,the challenges of gel-based TENGs for flexible sensing are discussed,and feasible strategies are proposed to guide future research. 展开更多
关键词 Triboelectric nanogenerators Gel materials Triboelectric materials flexible sensing
下载PDF
Hierarchically Structured Nb_(2)O_5 Microflowers with Enhanced Capacity and Fast-Charging Capability for Flexible Planar Sodium Ion Micro-Supercapacitors 被引量:2
19
作者 Jiaxin Ma Jieqiong Qin +8 位作者 Shuanghao Zheng Yinghua Fu Liping Chi Yaguang Li Cong Dong Bin Li Feifei Xing Haodong Shi Zhong‑Shuai Wu 《Nano-Micro Letters》 SCIE EI CAS CSCD 2024年第4期97-109,共13页
Planar Na ion micro-supercapacitors(NIMSCs) that offer both high energy density and power density are deemed to a promising class of miniaturized power sources for wearable and portable microelectron-ics. Nevertheless... Planar Na ion micro-supercapacitors(NIMSCs) that offer both high energy density and power density are deemed to a promising class of miniaturized power sources for wearable and portable microelectron-ics. Nevertheless, the development of NIMSCs are hugely impeded by the low capacity and sluggish Na ion kinetics in the negative electrode.Herein, we demonstrate a novel carbon-coated Nb_(2)O_5 microflower with a hierarchical structure composed of vertically intercrossed and porous nanosheets, boosting Na ion storage performance. The unique structural merits, including uniform carbon coating, ultrathin nanosheets and abun-dant pores, endow the Nb_(2)O_5 microflower with highly reversible Na ion storage capacity of 245 mAh g^(-1) at 0.25 C and excellent rate capability.Benefiting from high capacity and fast charging of Nb_(2)O_5 microflower, the planar NIMSCs consisted of Nb_(2)O_5 negative electrode and activated car-bon positive electrode deliver high areal energy density of 60.7 μWh cm^(-2),considerable voltage window of 3.5 V and extraordinary cyclability. Therefore, this work exploits a structural design strategy towards electrode materials for application in NIMSCs, holding great promise for flexible microelectronics. 展开更多
关键词 Nb_(2)O_5 nanosheets Microflowers Sodium ion micro-supercapacitors FLEXIBILITY Energy storage
下载PDF
Ionic Liquid-Enhanced Assembly of Nanomaterials for Highly Stable Flexible Transparent Electrodes 被引量:1
20
作者 Jianmin Yang Li Chang +2 位作者 Xiqi Zhang Ziquan Cao Lei Jiang 《Nano-Micro Letters》 SCIE EI CAS CSCD 2024年第7期441-455,共15页
The controlled assembly of nanomaterials has demon-strated significant potential in advancing technological devices.However,achieving highly efficient and low-loss assembly technique for nanomate-rials,enabling the cr... The controlled assembly of nanomaterials has demon-strated significant potential in advancing technological devices.However,achieving highly efficient and low-loss assembly technique for nanomate-rials,enabling the creation of hierarchical structures with distinctive func-tionalities,remains a formidable challenge.Here,we present a method for nanomaterial assembly enhanced by ionic liquids,which enables the fabrication of highly stable,flexible,and transparent electrodes featuring an organized layered structure.The utilization of hydrophobic and non-volatile ionic liquids facilitates the production of stable interfaces with water,effectively preventing the sedimentation of 1D/2D nanomaterials assembled at the interface.Furthermore,the interfacially assembled nanomaterial monolayer exhibits an alternate self-climbing behavior,enabling layer-by-layer transfer and the formation of a well-ordered MXene-wrapped silver nanowire network film.The resulting composite film not only demonstrates exceptional photoelectric performance with a sheet resistance of 9.4Ωsq^(-1) and 93%transmittance,but also showcases remarkable environmental stability and mechanical flexibility.Particularly noteworthy is its application in transparent electromagnetic interference shielding materials and triboelectric nanogenerator devices.This research introduces an innovative approach to manufacture and tailor functional devices based on ordered nanomaterials. 展开更多
关键词 Ionic liquids ASSEMBLY Silver nanowires MXene nanosheets flexible transparent electrodes
下载PDF
上一页 1 2 250 下一页 到第
使用帮助 返回顶部