Complex equations of circular ring shells and slender ring shells overall-bending in a meridian plane are presented based on E. L. Axelrad's equations of flexible shells of revolution render asymmetrical lending. ...Complex equations of circular ring shells and slender ring shells overall-bending in a meridian plane are presented based on E. L. Axelrad's equations of flexible shells of revolution render asymmetrical lending. It turns out that the equations are analogous to Novozhilov's equations of symmetrical ring shells, where general sollutions have been given by W. Z. Chien. Therefore, by analogy with Chien's solution, a general solution for equations of the slender ring shells is put forward, which can be used to salve bellow's overall-bending problems.展开更多
The overall bending of circular ring shells subjected to bending moments and lateral forces is discussed. The derivation of the equations was based upon the theory of flexible shells generalized by E.L. Axelrad and th...The overall bending of circular ring shells subjected to bending moments and lateral forces is discussed. The derivation of the equations was based upon the theory of flexible shells generalized by E.L. Axelrad and the assumption of the moderately slender ratio less than 1/3 (i.e., ratio between curvature radius of the meridian and distance from the meridional curvature center to the axis of revolution). The present general solution is an analytical one convergent in the whole domain of the shell and with the necessary integral constants for the boundary value problems. It can be used to calculate the stresses and displacements of the related bellows. The whole work is arranged into four parts: (Ⅰ) Governing equation and general solution; (Ⅱ) Calculation for Omega_shaped bellows; (Ⅲ) Calculation for C_shaped bellows; (Ⅳ) Calculation for U_shaped bellows. This paper is the first part.展开更多
This is one of the applications of Part (Ⅰ), in which the angular stiffness, the lateral stiffness and the corresponding stress distributions of C_shaped bellows were calculated. The bellows was divided into protrudi...This is one of the applications of Part (Ⅰ), in which the angular stiffness, the lateral stiffness and the corresponding stress distributions of C_shaped bellows were calculated. The bellows was divided into protruding sections and concave sections for the use of the general solution (Ⅰ), but the continuity of the stress resultants and the deformations at each joint of the sections were entirely satisfied. The present results were compared with those of the other theories and experiments, and are also tested by the numerically integral method. It is shown that the governing equation and the general solution (Ⅰ) are very effective.展开更多
This is one of the applications of Part (Ⅰ),in which the angular stiffness, and the corresponding stress distributions of U_shaped bellows were discussed. The bellows was divided into protruding sections, concave sec...This is one of the applications of Part (Ⅰ),in which the angular stiffness, and the corresponding stress distributions of U_shaped bellows were discussed. The bellows was divided into protruding sections, concave sections and ring plates for the calculation that the general solution (Ⅰ) with its reduced form to ring plates were used respectively, but the continuity of the surface stresses and the meridian rotations at each joint of the sections were entirely satisfied. The present results were compared with those of the slender ring shell solution proposed earlier by the authors, the standards of the Expansion Joint Manufacturers Association (EJMA), the experiment and the finite element method. It is shown that the governing equation and the general solution (Ⅰ) are very effective.展开更多
is one of the applications of (Ⅰ), in which the angular stiffness, the lateral stiffness and the corresponding stress distributions of Omega_shaped bellows were calculated, and the present results were compared with ...is one of the applications of (Ⅰ), in which the angular stiffness, the lateral stiffness and the corresponding stress distributions of Omega_shaped bellows were calculated, and the present results were compared with those of the other theories and experiments. It is shown that the non_homogeneous solution of (Ⅰ) can solve the pure bending problem of the bellows by itself, and be more effective than by the theory of slender ring shells; but if a lateral slide of the bellows support exists the non_homogeneous solution will no longer entirely satisfy the boundary conditions of the problem, in this case the homogeneous solution of (Ⅰ) should be included, that is to say, the full solution of (Ⅰ) can meet all the requirements.展开更多
A linear complex equation for slender ring shells overall bending in a meridian plane is given based on E. L. Axelrad's theory of flexible shells. And the non homogeneous solution is obtained from W. Z. Chien...A linear complex equation for slender ring shells overall bending in a meridian plane is given based on E. L. Axelrad's theory of flexible shells. And the non homogeneous solution is obtained from W. Z. Chien's solution for axial symmetrical slender ring shells to investigate the overall bending problem of Ω shaped bellows subjected to pure bending moments. The values calculated in the present paper are very close to the existing experiment. Thus Chien's work on axial symmetrical problems for ring shells has been extended to overall bending problems.展开更多
The formulae for stresses and angular displacements of U-shaped bellows overall bending in a meridian plane under pure bending moments are presented based on the general solution for slender ring shells proposed by Zh...The formulae for stresses and angular displacements of U-shaped bellows overall bending in a meridian plane under pure bending moments are presented based on the general solution for slender ring shells proposed by Zhu Weiping, et al. and the solution for ring plates. The results evaluated in this paper are compared with those on EJMA (standards of the expansion joint manufacturers association) and of the experiment given by Li Tingxilz, et al.展开更多
文摘Complex equations of circular ring shells and slender ring shells overall-bending in a meridian plane are presented based on E. L. Axelrad's equations of flexible shells of revolution render asymmetrical lending. It turns out that the equations are analogous to Novozhilov's equations of symmetrical ring shells, where general sollutions have been given by W. Z. Chien. Therefore, by analogy with Chien's solution, a general solution for equations of the slender ring shells is put forward, which can be used to salve bellow's overall-bending problems.
文摘The overall bending of circular ring shells subjected to bending moments and lateral forces is discussed. The derivation of the equations was based upon the theory of flexible shells generalized by E.L. Axelrad and the assumption of the moderately slender ratio less than 1/3 (i.e., ratio between curvature radius of the meridian and distance from the meridional curvature center to the axis of revolution). The present general solution is an analytical one convergent in the whole domain of the shell and with the necessary integral constants for the boundary value problems. It can be used to calculate the stresses and displacements of the related bellows. The whole work is arranged into four parts: (Ⅰ) Governing equation and general solution; (Ⅱ) Calculation for Omega_shaped bellows; (Ⅲ) Calculation for C_shaped bellows; (Ⅳ) Calculation for U_shaped bellows. This paper is the first part.
文摘This is one of the applications of Part (Ⅰ), in which the angular stiffness, the lateral stiffness and the corresponding stress distributions of C_shaped bellows were calculated. The bellows was divided into protruding sections and concave sections for the use of the general solution (Ⅰ), but the continuity of the stress resultants and the deformations at each joint of the sections were entirely satisfied. The present results were compared with those of the other theories and experiments, and are also tested by the numerically integral method. It is shown that the governing equation and the general solution (Ⅰ) are very effective.
文摘This is one of the applications of Part (Ⅰ),in which the angular stiffness, and the corresponding stress distributions of U_shaped bellows were discussed. The bellows was divided into protruding sections, concave sections and ring plates for the calculation that the general solution (Ⅰ) with its reduced form to ring plates were used respectively, but the continuity of the surface stresses and the meridian rotations at each joint of the sections were entirely satisfied. The present results were compared with those of the slender ring shell solution proposed earlier by the authors, the standards of the Expansion Joint Manufacturers Association (EJMA), the experiment and the finite element method. It is shown that the governing equation and the general solution (Ⅰ) are very effective.
文摘is one of the applications of (Ⅰ), in which the angular stiffness, the lateral stiffness and the corresponding stress distributions of Omega_shaped bellows were calculated, and the present results were compared with those of the other theories and experiments. It is shown that the non_homogeneous solution of (Ⅰ) can solve the pure bending problem of the bellows by itself, and be more effective than by the theory of slender ring shells; but if a lateral slide of the bellows support exists the non_homogeneous solution will no longer entirely satisfy the boundary conditions of the problem, in this case the homogeneous solution of (Ⅰ) should be included, that is to say, the full solution of (Ⅰ) can meet all the requirements.
文摘A linear complex equation for slender ring shells overall bending in a meridian plane is given based on E. L. Axelrad's theory of flexible shells. And the non homogeneous solution is obtained from W. Z. Chien's solution for axial symmetrical slender ring shells to investigate the overall bending problem of Ω shaped bellows subjected to pure bending moments. The values calculated in the present paper are very close to the existing experiment. Thus Chien's work on axial symmetrical problems for ring shells has been extended to overall bending problems.
文摘The formulae for stresses and angular displacements of U-shaped bellows overall bending in a meridian plane under pure bending moments are presented based on the general solution for slender ring shells proposed by Zhu Weiping, et al. and the solution for ring plates. The results evaluated in this paper are compared with those on EJMA (standards of the expansion joint manufacturers association) and of the experiment given by Li Tingxilz, et al.