期刊文献+
共找到328篇文章
< 1 2 17 >
每页显示 20 50 100
Preparation and Reinforcement Adaptability of Jute Fiber Reinforced Magnesium Phosphate Cement Based Composite Materials
1
作者 刘芯州 郭远臣 +3 位作者 WANG Rui XIANG Kai WANG Xue YE Qing 《Journal of Wuhan University of Technology(Materials Science)》 SCIE EI CAS CSCD 2024年第4期999-1009,共11页
To improve the brittleness characteristics of magnesium phosphate cement-based materials(MPC)and to promote its promotion and application in the field of structural reinforcement and repair,this study aimed to increas... To improve the brittleness characteristics of magnesium phosphate cement-based materials(MPC)and to promote its promotion and application in the field of structural reinforcement and repair,this study aimed to increase the toughness of MPC by adding jute fiber,explore the effects of different amounts of jute fiber on the working and mechanical properties of MPC,and prepare jute fiber reinforced magnesium phosphate cement-based materials(JFRMPC)to reinforce damaged beams.The improvement effect of beam performance before and after reinforcement was compared,and the strengthening and toughening mechanisms of jute fiber on MPC were explored through microscopic analysis.The experimental results show that,as the content of jute fiber(JF)increases,the fluidity and setting time of MPC decrease continuously;When the content of jute fiber is 0.8%,the compressive strength,flexural strength,and bonding strength of MPC at 28 days reach their maximum values,which are increased by 18.0%,20.5%,and 22.6%compared to those of M0,respectively.The beam strengthened with JFRMPC can withstand greater deformation,with a deflection of 2.3 times that of the unreinforced beam at failure.The strain of the steel bar is greatly reduced,and the initial crack and failure loads of the reinforced beam are increased by 192.1%and 16.1%,respectively,compared to those of the unreinforced beam.The JF added to the MPC matrix dissipates energy through tensile fracture and debonding pull-out,slowing down stress concentration and inhibiting the free development of cracks in the matrix,enabling JFRMPC to exhibit higher strength and better toughness.The JF does not cause the hydration of MPC to generate new compounds but reduces the amount of hydration products generated. 展开更多
关键词 magnesium phosphate cement jute fiber reinforcement of damaged beam flexural behavior
下载PDF
Seismic performance evaluation of hybrid coupled shear wall system with shear and flexural fuse-type steel coupling beams
2
作者 Zahra Ramezandoust Abbas Tajaddini Panam Zarfam 《Earthquake Engineering and Engineering Vibration》 SCIE EI CSCD 2024年第3期691-712,共22页
Replaceable flexural and shear fuse-type coupling beams are used in hybrid coupled shear wall(HCSW)systems,enabling concrete buildings to be promptly recovered after severe earthquakes.This study aimed to analytically... Replaceable flexural and shear fuse-type coupling beams are used in hybrid coupled shear wall(HCSW)systems,enabling concrete buildings to be promptly recovered after severe earthquakes.This study aimed to analytically evaluate the seismic behavior of flexural and shear fuse beams situated in short-,medium-and high-rise RC buildings that have HCSWs.Three building groups hypothetically located in a high seismic hazard zone were studied.A series of 2D nonlinear time history analyses was accomplished in OpenSees,using the ground motion records scaled at the design basis earthquake level.It was found that the effectiveness of fuses in HCSWs depends on various factors such as size and scale of the building,allowable rotation value,inter-story drift ratio,residual drift quantity,energy dissipation value of the fuses,etc.The results show that shear fuses better meet the requirements of rotations and drifts.In contrast,flexural fuses dissipate more energy,but their sectional stiffness should increase to meet other requirements.It was concluded that adoption of proper fuses depends on the overall scale of the building and on how associated factors are considered. 展开更多
关键词 hybrid coupled shear wall steel fuse coupling beam shear and flexural fuse nonlinear dynamic analysis seismic performance
下载PDF
Thermo-Physical Potential of Recycled Banana Fibers for Improving the Thermal and Mechanical Properties of Biosourced Gypsum-Based Materials
3
作者 Youssef Maaloufa Soumia Mounir +8 位作者 Sara Ibnelhaj Fatima Zohra El Wardi Asma Souidi Yakubu Aminu Dodo Malika Atigui Mina Amazal Abelhamid Khabbazi Hassan Demrati Ahmed Aharoune 《Journal of Renewable Materials》 EI CAS 2024年第4期843-867,共25页
The development of bio-sourced materials is essential to ensuring sustainable construction;it is considered a locomotive of the green economy.Furthermore,it is an abundant material in our country,to which very little ... The development of bio-sourced materials is essential to ensuring sustainable construction;it is considered a locomotive of the green economy.Furthermore,it is an abundant material in our country,to which very little attention is being given.This work aims to valorize the waste of the trunks of banana trees to be used in construction.Firstly,the physicochemical properties of the fiber,such as the percentage of crystallization and its morphology,have been determined by X-ray diffraction tests and scanning electron microscopy to confirm the potential and the impact of the mode of drying on the quality of the banana fibers,with the purpose to promote the use of this material in construction.Secondly,the results obtained with the gypsum matrix allowed us to note a preponderant improvement in the composite’s thermal properties thanks to the variation of the banana fiber additive.Thirdly,the impact of the nature of the banana fiber distribution(either fiber mixed in matrix or fiber series model)on the flexural and compressive strengths of the composites was studied.The results obtained indicate that the insulation gain reaches up to 40%.It depends on the volume fraction and type of distribution of the banana fibers.However,the thermal inertia of the composites developed,represented by thermal diffusivity and thermal effusivity,was studied.Results indicate a gain of 40%and 25%,respectively,in terms of thermal diffusivity and thermal effusivity of the developed composites compared to plaster alone.Concerning the mechanical properties,the flexural strength depends on the percentage of the volume fraction of banana fibers used,and it can reach 20%more than the flexural strength of plaster;nevertheless,there is a significant loss in terms of the compressive strength of the studied composites.The results obtained are confirmed by the microstructure of the fiber banana.In fact,the morphology of the banana fibers was improved by the drying process.It reduces the amorphous area and improves the cellulosic crystalline surfaces,which assures good adhesion between the fiber and the matrix plaster.Finally,the dimensionless coefficient analysis was done to judge the optimal proportion of the banana fiber additive and to recommend its use even on false ceilings or walls. 展开更多
关键词 Biosourced materials fiber banana flexural strength mechanical properties open-air drying PLASTER thermal properties waste management
下载PDF
AHermitian C^(2) Differential Reproducing Kernel Interpolation Meshless Method for the 3D Microstructure-Dependent Static Flexural Analysis of Simply Supported and Functionally Graded Microplates
4
作者 Chih-Ping Wu Ruei-Syuan Chang 《Computer Modeling in Engineering & Sciences》 SCIE EI 2024年第10期917-949,共33页
This work develops a Hermitian C^(2) differential reproducing kernel interpolation meshless(DRKIM)method within the consistent couple stress theory(CCST)framework to study the three-dimensional(3D)microstructuredepend... This work develops a Hermitian C^(2) differential reproducing kernel interpolation meshless(DRKIM)method within the consistent couple stress theory(CCST)framework to study the three-dimensional(3D)microstructuredependent static flexural behavior of a functionally graded(FG)microplate subjected to mechanical loads and placed under full simple supports.In the formulation,we select the transverse stress and displacement components and their first-and second-order derivatives as primary variables.Then,we set up the differential reproducing conditions(DRCs)to obtain the shape functions of the Hermitian C^(2) differential reproducing kernel(DRK)interpolant’s derivatives without using direct differentiation.The interpolant’s shape function is combined with a primitive function that possesses Kronecker delta properties and an enrichment function that constituents DRCs.As a result,the primary variables and their first-and second-order derivatives satisfy the nodal interpolation properties.Subsequently,incorporating ourHermitianC^(2)DRKinterpolant intothe strong formof the3DCCST,we develop a DRKIM method to analyze the FG microplate’s 3D microstructure-dependent static flexural behavior.The Hermitian C^(2) DRKIM method is confirmed to be accurate and fast in its convergence rate by comparing the solutions it produces with the relevant 3D solutions available in the literature.Finally,the impact of essential factors on the transverse stresses,in-plane stresses,displacements,and couple stresses that are induced in the loaded microplate is examined.These factors include the length-to-thickness ratio,the material length-scale parameter,and the inhomogeneity index,which appear to be significant. 展开更多
关键词 Consistent/modified couple stress theory differential reproducing kernel methods microplates point collocation methods static flexural 3D microstructure-dependent analysis
下载PDF
Laminated Solid Timber Slab with Transverse Prestressing Using the Strategy of Interleaved Vertical Displacement of Lamellae
5
作者 Bianca Bispo dos Reis Jorge Daniel de Melo Moura +1 位作者 Marcos Vinício de Camargo Everaldo Pletz 《Journal of Civil Engineering and Architecture》 2024年第4期186-198,共13页
This article presents a study on the structural behavior of transversely prestressed laminated timber slabs,focusing on an innovative approach:vertically misaligned lamellae.This misalignment,achieved by sliding verti... This article presents a study on the structural behavior of transversely prestressed laminated timber slabs,focusing on an innovative approach:vertically misaligned lamellae.This misalignment,achieved by sliding vertically the wooden lamellae rather than aligning them,enhances the slab’s cross-section moment of inertia,thereby improving load-bearing capacity and stiffness.Testing involved two groups of structural size specimens:one with vertically aligned lamellae(control group)and the other with misaligned lamellae(study group).Results showed the study group exhibited 42%superior stiffness and 10%less load capacity compared to the control.Failures typically occurred individually in the lamellae,particularly in those with defects or lower modulus of elasticity,concentrated in the middle third of the slabs’free span where tensile stresses peak.Despite a higher number of failed lamellae,the study group demonstrated promising performance.Analysis of prestressing bar indicated no damage at all in the thread,suggesting potential for reducing bar diameter.These findings offer crucial insights into applying these slabs in timber construction as well as to any kind of construction. 展开更多
关键词 Transversal prestressed slabs wooden construction plantation wood flexural testing design methodology
下载PDF
Theory of Flexural Shear, Bending and Torsion for a Thin-Walled Beam of Open Section
6
作者 David W. A. Rees Abdelraouf M. Sami Alsheikh 《World Journal of Mechanics》 2024年第3期23-53,共31页
Aspects of the general Vlasov theory are examined separately as applied to a thin-walled channel section cantilever beam under free-end end loading. In particular, the flexural bending and shear that arise under trans... Aspects of the general Vlasov theory are examined separately as applied to a thin-walled channel section cantilever beam under free-end end loading. In particular, the flexural bending and shear that arise under transverse shear and axial torsional loading are each considered theoretically. These analyses involve the location of the shear centre at which transverse shear forces when applied do not produce torsion. This centre, when taken to be coincident with the centre of twist implies an equivalent reciprocal behaviour. That is, an axial torsion applied concentric with the shear centre will twist but not bend the beam. The respective bending and shear stress conversions are derived for each action applied to three aluminium alloy extruded channel sections mounted as cantilevers with a horizontal principal axis of symmetry. Bending and shear are considered more generally for other thin-walled sections when the transverse loading axes at the shear centre are not parallel to the section = s centroidal axes of principal second moments of area. The fixing at one end of the cantilever modifies the St Venant free angular twist and the free warping displacement. It is shown from the Wagner-Kappus torsion theory how the end constrained warping generates an axial stress distribution that varies with the length and across the cross-section for an axial torsion applied to the shear centre. It should be mentioned here for wider applications and validation of the Vlasov theory that attendant papers are to consider in detail bending and torsional loadings applied to other axes through each of the centroid and the web centre. Therein, both bending and twisting arise from transverse shear and axial torsion applied to each position being displaced from the shear centre. Here, the influence of the axis position upon the net axial and shear stress distributions is to be established. That is, the net axial stress from axial torsional loading is identified with the sum of axial stress due to bending and axial stress arising from constrained warping displacements at the fixing. The net shear stress distribution overlays the distributions from axial torsion and that from flexural shear under transverse loading. Both arise when transverse forces are displaced from the shear centre. 展开更多
关键词 Thin Wall Theory Cantilever Beam Open Channel Section Principal Axes flexure Transverse Shear TORSION Shear Centre Shear Flow WARPING Fixed-End Constraint
下载PDF
Improvement of Mechanical Qualities of Clay Material through Coconut Fiber Stabilization
7
作者 Boukaré Ouedraogo Abdoulaye Compaore +2 位作者 Moumouni Derra Kalifa Palm Dieudonné Joseph Bahiebo 《Materials Sciences and Applications》 2024年第7期201-212,共12页
The criticisms regularly formulated towards clay or soil, in general, are its weak mechanical qualities and low water quality. Therefore, it is necessary to find techniques to improve the properties of this material, ... The criticisms regularly formulated towards clay or soil, in general, are its weak mechanical qualities and low water quality. Therefore, it is necessary to find techniques to improve the properties of this material, which is widely used worldwide. Here, we propose stabilizing clay with coconut fiber as a solution to enhance its mechanical properties. To do this, we used an experimental method, first determining the geotechnical properties of the clay and then its mechanical properties. The geotechnical study using the Proctor Test revealed that the dry density of the clay is γb = 1.42 g/cm3, and its water content is W = 22.3%. By applying the rolling method, the Atterberg limits were determined: liquid limit Wl = 63.6, plastic limit Wp = 27.9, plasticity index Ip = 35.7, and consistency index Ic = 1.46. With 25 P = 35.7 1.3, according to the water classification, it falls into class A3ts. The mechanical part focused on compression and flexural strengths obtained using a PROETI hydraulic press. We obtained a flexural strength of 0.63 MPa for simple clay (BA);0.89 MPa for clay + 0.25% fiber (BAF1/4);1.68 MPa for clay + 0.5% fiber (BAF1/2);1.87 MPa for clay + 0.75% fiber (BAF3/4);and 3.91 MPa for clay + 1% fiber (BAF1). As for the compression strength, BA = 5.90 MPa, BAF1/4 = 6.395 MPa, BAF1/2 = 6.292 MPa, BAF3/4 = 6.065 MPa, and BAF1 = 5.423 MPa. The addition of fiber has thus improved the mechanical qualities of the simple clay. These stabilized bricks can be used for sustainable and bioclimatic construction, providing higher durability and good comfort. 展开更多
关键词 Compression Strength Flexural Strength Coconut Fiber CLAY Geotechnical Properties
下载PDF
Effect of Lateritic Stone Aggregate and Coconut Husk Fiber on the Properties of Concrete
8
作者 Edmund Borbi Humphrey Danso Emmanuel Appiah-Kubi 《Open Journal of Civil Engineering》 2024年第2期240-257,共18页
Natural stone aggregate forms the bulk volume of concrete and has contributed to the increased cost of concrete production. This has led to the search for alternate aggregates such as lateritic stone for concrete prod... Natural stone aggregate forms the bulk volume of concrete and has contributed to the increased cost of concrete production. This has led to the search for alternate aggregates such as lateritic stone for concrete production. This paper investigates the engineering properties of concrete produced with lateritic aggregate (LA) as the coarse aggregate replacement and coconut husk fibre (CHF) as reinforcement. Natural stone aggregate was replaced by LA at 0%, 10%, 20%, 30%, 40%, and 50%, with 0.25% constant CHF by weight. A mix proportion of 1:1.5:3 with a water-cement ratio of 0.6 was used for producing concrete. A total of 162 specimens (90 cubes and 72 beams) were prepared and tested at the 7, 14, 21, and 28 days of curing. The highest compressive strength was 43.36 N/mm2 (10% LA replacement) as compared to the control of 41.51 N/mm2. The 10% LA replacement obtained the highest flexural strength of 5.35 N/mm2 as compared with the 5.29 N/mm2 for the control. The water absorption of the concrete increased from 2.8% (control) to 3.57% (50% replacement LA). Scanning electron microscopy (SEM) revealed micro gaps between CHF and LA concrete. The study, therefore, concludes that the use of LA and CHF positively influenced the strength properties of concrete. 10% LA replacement of coarse aggregate and 0.25% CHF is recommended to practitioners for use. 展开更多
关键词 CONCRETE Coarse Aggregate Compressive Strength Flexural Strength Natural Stone Aggregate SEM
下载PDF
The Effects of the Longitudinal Axis of Loading upon Bending, Shear and Torsion of a Thin-Walled Cantilever Channel Beam
9
作者 David W. A. Rees Abdelraouf M. Sami Alsheikh 《World Journal of Mechanics》 2024年第5期73-96,共24页
Three aluminium channel sections of US standard extruded dimension are mounted as cantilevers with x-axis symmetry. The flexural bending and shear that arise with applied axial torsion are each considered theoreticall... Three aluminium channel sections of US standard extruded dimension are mounted as cantilevers with x-axis symmetry. The flexural bending and shear that arise with applied axial torsion are each considered theoretically and numerically in terms of two longitudinal axes of loading not coincident with the shear centre. In particular, the warping displacements, stiffness and stress distributions are calculated for torsion applied to longitudinal axes passing through the section’s centroid and its web centre. The stress conversions derived from each action are superimposed to reveal a net sectional stress distribution. Therein, the influence of the axis position upon the net axial and shear stress distributions is established compared to previous results for each beam when loading is referred to a flexural axis through the shear centre. Within the net stress analysis is, it is shown how the constraint to free warping presented by the end fixing modifies the axial stress. The latter can be identified with the action of a ‘bimoment’ upon each thin-walled section. 展开更多
关键词 Thin-Aluminium Channels Cantilever Beam Bending Shear Torsion WARPING BIMOMENT Flexural Axis Centre of Twist CENTROID Shear Centre Torsional Stiffness Constrained Stress
下载PDF
新型硬盘磁头折片组合Flexure设计
10
作者 周晶 江新 徐东建 《现代制造技术与装备》 2012年第1期15-16,共2页
针对大容量、高速硬盘的需要,提出了一种低特性阻抗,低功耗,高带宽的新型硬盘磁头折片组合Flexure的设计,重点说明了该Flexure的结构、工作原理及其主要技术特性。并结合流行电磁仿真软件ADS对其电磁性能进行了设计,仿真及验证。
关键词 硬盘 flexure设计 TDR仿真
下载PDF
Topological and Shape Optimization of Flexure Hinges for Designing Compliant Mechanisms Using the Level Set Method 被引量:6
11
作者 Benliang Zhu Xianmin Zhang +2 位作者 Min Liu Qi Chen Hai Li 《Chinese Journal of Mechanical Engineering》 SCIE EI CAS CSCD 2019年第1期42-53,共12页
A flexure hinge is a major component in designing compliant mechanisms that o ers unique possibilities in a wide range of application fields in which high positioning accuracy is required. Although various flexure hin... A flexure hinge is a major component in designing compliant mechanisms that o ers unique possibilities in a wide range of application fields in which high positioning accuracy is required. Although various flexure hinges with di erent configurations have been successively proposed, they are often designed based on designers' experiences and inspirations. This study presents a systematic method for topological optimization of flexure hinges by using the level set method. Optimization formulations are developed by considering the functional requirements and geometrical constraints of flexure hinges. The functional requirements are first constructed by maximizing the compliance in the desired direction while minimizing the compliances in the other directions. The weighting sum method is used to construct an objective function in which a self-adjust method is used to set the weighting factors. A constraint on the symmetry of the obtained configuration is developed. Several numerical examples are presented to demonstrate the validity of the proposed method. The obtained results reveal that the design of a flexure hinge starting from the topology level can yield more choices for compliant mechanism design and obtain better designs that achieve higher performance. 展开更多
关键词 TOPOLOGY optimization Compliant mechanisms flexure HINGES Level SET METHOD
下载PDF
Optimizing the Qusai-static Folding and Deploying of Thin-Walled Tube Flexure Hinges with Double Slots 被引量:6
12
作者 YANG Hui DENG Zongquan +2 位作者 LIU Rongqiang WANG Yan GUO Hongwei 《Chinese Journal of Mechanical Engineering》 SCIE EI CAS CSCD 2014年第2期279-286,共8页
The thin-walled tube flexure(TWTF) hinges have important potential application value in the deployment mechanisms of satellite and solar array, but the optimal design of the TWTF hinges haven't been completely solv... The thin-walled tube flexure(TWTF) hinges have important potential application value in the deployment mechanisms of satellite and solar array, but the optimal design of the TWTF hinges haven't been completely solved, which restricts their applications. An optimal design method for the qusai-static folding and deploying of TWTF hinges with double slots is presented based on the response surface theory. Firstly, the full factorial method is employed to design of the experiments. Then, the finite element models of the TWTF hinges with double slots are constructed to simulate the qusai-static folding and deploying non-linear analysis. What's more, the mathematical model of the TWTF flexure hinge quasi-static folding and deploying properties are derived by the response surface method. Considering of small mass and high stability, the peak moment of quasi-static folding and deploying as well as the lightless are set as the objectives to get the optimal performances. The relative errors of the objectives between the optimal design results and the FE analysis results are less than 7%, which demonstrates the precision of the surrogate models. Lastly, the parameter study shows that both the slots length and the slots width both have significant effects to the peak moment of quasi-static folding and deploying of TWTF hinges with double slots. However, the maximum Mises stress of quasi-static folding is more sensitive to the slots length than the slots width. The proposed research can be applied to optimize other thin-walled flexure hinges under quasi-static folding and deploying, which is of great importance to design of flexure hinges with high stability and low stress. 展开更多
关键词 design optimization quasi-static folding and deploying flexure hinges thin-walled tube response surface method numerical simulation
下载PDF
Novel Annulus-shaped Flexure Pivot in Rotation Application and Dimensionless Design 被引量:7
13
作者 BI Shusheng ZHAO Shanshan SUN Minglei YU Jingjun ZONG Guanghua 《Chinese Journal of Mechanical Engineering》 SCIE EI CAS CSCD 2009年第6期800-809,共10页
Large-deflection flexure pivot is widely used in high precision rotation application, but there are less flexure configurations and simple and convenient design methods, This paper presents a novel large-deflection cu... Large-deflection flexure pivot is widely used in high precision rotation application, but there are less flexure configurations and simple and convenient design methods, This paper presents a novel large-deflection curved-compliant annulus-shaped flexure pivot composed of six curved beam flexure elements. It can offer more than lO^angular stroke theoretically. Firstly, main-motion pseudo-rigid-body method is introduced to establish the flexure pivot model. Although pseudo-rigid-body method can be used to analyze the large-deformation flexure pivot performance, the method is definitely a laborious and difficult task for designing this novel flexure pivot. In order to simply the designing process, dimension-design graphs based on the parametric models and finite element analysis is presented. Using the dimension-design method as a tool, the designers can determine the optimal geometry rapidly, based on the stiffness and rotation demands of an annulus-shaped flexure pivot. Finally, dimension-design graph examples are given whose primary design aims to achieve a rotation stroke of annulus-shaped flexure pivot. The finite element analysis results show that the relative designing error between anticipative rotation stroke and graph design result is less than 4%. The dimensionless method used in designing annulus-shaped flexure pivot can reduce design process in both time and complexity. The novel annulus-shaped flexure pivot and dimension-design method are helpful supplement to configuration and design method of large-deflection flexure pivot. 展开更多
关键词 annulus-shaped flexure pivot dimensionless design pseudo-rigid-body model
下载PDF
Stiffness Analysis of Corrugated Flexure Beam Used in Compliant Mechanisms 被引量:6
14
作者 WANG Nianfeng LIANG Xiaohe ZHANG Xianmin 《Chinese Journal of Mechanical Engineering》 SCIE EI CAS CSCD 2015年第4期776-784,共9页
Conventional flexible joints generally have limited range of motion and high stress concentration. To overcome these shortcomings, corrugated flexure beam(CF beam) is designed because of its large flexibility obtain... Conventional flexible joints generally have limited range of motion and high stress concentration. To overcome these shortcomings, corrugated flexure beam(CF beam) is designed because of its large flexibility obtained from longer overall length on the same span. The successful design of compliant mechanisms using CF beam requires manipulation of the stiffnesses as the design variables. Empirical equations of the CF beam stiffness components, except of the torsional stiffness, are obtained by curve-fitting method. The application ranges of all the parameters in each empirical equation are also discussed. The ratio of off-axis to axial stiffness is considered as a key characteristic of an effective compliant joint. And parameter study shows that the radius of semi-circular segment and the length of straight segment contribute most to the ratio. At last, CF beam is used to design translational and rotational flexible joints, which also verifies the validity of the empirical equations. CF beam with large flexibility is presented, and empirical equations of its stiffness are proposed to facilitate the design of flexible joint with large range of motion. 展开更多
关键词 corrugated flexure beam stiffness analysis compliant mechanisms
下载PDF
Design and Dynamic Modeling of a 2-DOF Decoupled Flexure-Based Mechanism 被引量:3
15
作者 QIN Yanding TIAN Yanling ZHANG Dawei 《Chinese Journal of Mechanical Engineering》 SCIE EI CAS CSCD 2012年第4期688-696,共9页
Flexure mechanisms with decoupled characteristics have been widely utilized in precision positioning applications.However,these mechanisms suffer from either slow response or low load capability.Furthermore,asymmetric... Flexure mechanisms with decoupled characteristics have been widely utilized in precision positioning applications.However,these mechanisms suffer from either slow response or low load capability.Furthermore,asymmetric design always leads to thermal error.In order to solve these issues,a novel 2-DOF decoupled mechanism is developed by monolithically manufacturing sets of statically indeterminate symmetric(SIS) flexure structures in parallel.Symmetric design helps to eliminate the thermal error and Finite Element Analysis(FEA) results show that the maximum coupling ratio between X and Y axes is below 0.25% when a maximum pretension force of 200 N is applied.By ignoring the mass effect,all the SIS flexure structures are simplified to "spring-damper" components,from which the static and dynamics model are derived.The relation between the first resonant frequency of the mechanism and the load is investigated by incorporating the load mass into the proposed dynamics model.Analytical results show that even with a load of 0.5 kg,the first resonant frequency is still higher than 300 Hz,indicating a high load capability.The mechanism's static and dynamic performances are experimentally examined.The linear stiffnesses of the mechanism at the working platform and at the driving point are measured to be 3.563 0 N·μm-1 and 3.362 1 N·μm-1,respectively.The corresponding estimation values from analytical models are 3.405 7 N·μm-1 and 3.381 7 N·μm-1,which correspond to estimation errors of-4.41% and 0.6%,respectively.With an additional load of 0.16 kg,the measured and estimated first resonant frequencies are 362 Hz and 365 Hz,respectively.The estimation error is only 0.55%.The analytical and experimental results show that the developed mechanism has good performances in both decoupling ability and load capability;its static and dynamic performance can be precisely estimated from corresponding analytical models.The proposed mechanism has wide potentials in precision positioning applications. 展开更多
关键词 precision positioning flexure hinge DYNAMICS decoupled structure
下载PDF
Effect of Degree-of-Symmetry on Kinetostatic Characteristics of Flexure Mechanisms:A Comparative Case Study 被引量:1
16
作者 Xiao-Bing He Jing-Jun Yu +1 位作者 Wan-Wan Zhang Guang-Bo Hao 《Chinese Journal of Mechanical Engineering》 SCIE EI CAS CSCD 2018年第2期54-65,共12页
The current research of kinetostatic characteristics in flexure mechanisms mainly focus on the improvement of accuracy. To reduce or eliminate the parasitic motion is considered as an approach by using the common know... The current research of kinetostatic characteristics in flexure mechanisms mainly focus on the improvement of accuracy. To reduce or eliminate the parasitic motion is considered as an approach by using the common knowledge of symmetry. However, there is no study on designing the flexure mechanisms with symmetrical features as many as possible for better kinetostatic performance, when considering the resulting cost by the symmetry. In this paper, the concept of degree of symmetry(DoS) is proposed for the first time, which is committed to symmetry design in the phase of conceptual design. A class of flexure mechanisms with 0?DoS, 1?DoS, 2?DoS and 3?DoS are synthesized respectively based on the Freedom and Constraint Topology method. Their overall compliance matrices in an analytical form formulated within the framework of the screw theory are used to analyze and compare the effect of different number of DoS on the kinetostatic characteristics for flexure mechanisms. The finite element analysis(FEA) simulations are implemented to verify the analytical results. These results show that the higher the DoS is, the smaller the parasitic motion error will be. The flexure model with 3?DoS is optimized according to the overall compliance matrix and then tested by using the FEA simulation. The testing result shows that with the best combination parameters, the parasitic motion error for 3?DoS mechanism is almost eliminated. This research introduces a design principle which can alleviate the unwanted parasitic motion for better accuracy. 展开更多
关键词 flexure mechanism SYMMETRY Kinetostatic characteristics FEA simulation
下载PDF
Adaptive Kalman Filter of Transfer Alignment with Un-modeled Wing Flexure of Aircraft 被引量:1
17
作者 周峰 孟秀云 《Journal of Beijing Institute of Technology》 EI CAS 2008年第4期434-438,共5页
The alignment accuracy of the strap-down inertial navigation system (SINS) of airborne weapon is greatly degraded by the dynamic wing flexure of the aircraft. An adaptive Kalman filter uses innovation sequences base... The alignment accuracy of the strap-down inertial navigation system (SINS) of airborne weapon is greatly degraded by the dynamic wing flexure of the aircraft. An adaptive Kalman filter uses innovation sequences based on the maximum likelihood estimated criterion to adapt the system noise covariance matrix and the measurement noise covariance matrix on line, which is used to estimate the misalignment if the model of wing flexure of the aircraft is unknown. From a number of simulations, it is shown that the accuracy of the adaptive Kalman filter is better than the conventional Kalman filter, and the erroneous misalignment models of the wing flexure of aircraft will cause bad estimation results of Kalman filter using attitude match method. 展开更多
关键词 transfer alignment adaptive Kalman filter wing flexure of the aircraft velocity and attitudematch method
下载PDF
The Effect of Composite Flexures on Aeroelastic Stability of a Hingeless Rotor Blade 被引量:1
18
作者 Shi Qinghua 《航空制造技术》 2007年第z1期128-133,共6页
The effects of ply orientation angle of composite flexures on stability of hingeless rotor blade system are studied.The composite hingeless rotor blade system is simplified as a hub,a flap flexure and a lag flexure.pi... The effects of ply orientation angle of composite flexures on stability of hingeless rotor blade system are studied.The composite hingeless rotor blade system is simplified as a hub,a flap flexure and a lag flexure.pitch bearing and main blade.The kinematics formulations are inferred by employing the moderate deflection beam theory.The shear deformation and warping related to torsion are considered.The quasi-steady strip theory with dynamic inflow effects is applied to obtain the aerodynamic loads acting on the blade.Based on these.the set of finite element formulations of a hingeless rotor blade system is worked out.The numerical results show that the ply angle of the composite flexures has great effects on the aeroelastic stability of rotor blade. 展开更多
关键词 Aeroelastic STABILITY BLADE COMPOSITE flexure BEAM
下载PDF
LOADS INFLUENCE ANALYSIS ON NOVEL HIGH PRECISION FLEXURE PARALLEL POSITIONER 被引量:1
19
作者 SUN Lining DONG Wei DU Zhijiang 《Chinese Journal of Mechanical Engineering》 SCIE EI CAS CSCD 2006年第1期37-40,共4页
A large workspace flexure parallel positioner system is developed, which can attain sub-micron scale accuracy over cubic centimeter motion range for utilizing novel wide-range flexure hinges instead of the conventiona... A large workspace flexure parallel positioner system is developed, which can attain sub-micron scale accuracy over cubic centimeter motion range for utilizing novel wide-range flexure hinges instead of the conventional mechanism joints. Flexure hinges eliminate backlash and friction, but on the other hand their deformation caused by initial loads influences the positioning accuracy greatly, so discussions about loads' influence analysis on this flexure parallel positioner is very necessary. The stiffness model of the whole mechanism is presented via stiffness assembly method based on the stiffness model of individual flexure hinge, And the analysis results are validated by the finite element analysis (FEA) simulation and experiment tests, which provide essential data to the practical application of this positioner system. 展开更多
关键词 flexure hinge Parallel positioner Stiffness analysis Finite element analysis (FEA)
下载PDF
NANO-BEARING:THE DESIGN OF A NEW TYPE OF AIR BEARING WITH FLEXURE STRUCTURE 被引量:1
20
作者 KO Pui Hang DU Ruxu 《Chinese Journal of Mechanical Engineering》 SCIE EI CAS CSCD 2007年第5期12-15,共4页
A new type of air bearing with flexure structure is introduced. The new bearing is designed for precision mechanical engineering devices such as mechanical watch movement. The new design uses the flexure structure to ... A new type of air bearing with flexure structure is introduced. The new bearing is designed for precision mechanical engineering devices such as mechanical watch movement. The new design uses the flexure structure to provide 3D damping to absorb shocks from all directions. Two designs are presented: one has 12 T-shape slots in the radian direction while the other has 8 spiral slots in the radian direction. Both designs have flexure mountings on the axial directions. Based on the finite element analysis (FEA), the new bearing can reduce the vibration (displacement) by as much as 8.37% and hence, can better protect the shafts. 展开更多
关键词 Precision engineering Bearing flexures structure Finite element analysis
下载PDF
上一页 1 2 17 下一页 到第
使用帮助 返回顶部