期刊文献+
共找到2篇文章
< 1 >
每页显示 20 50 100
Improved Fruit Fly Optimization Algorithm for Solving Lot-Streaming Flow-Shop Scheduling Problem 被引量:2
1
作者 张鹏 王凌 《Journal of Donghua University(English Edition)》 EI CAS 2014年第2期165-170,共6页
An improved fruit fly optimization algorithm( iFOA) is proposed for solving the lot-streaming flow-shop scheduling problem( LSFSP) with equal-size sub-lots. In the proposed iFOA,a solution is encoded as two vectors to... An improved fruit fly optimization algorithm( iFOA) is proposed for solving the lot-streaming flow-shop scheduling problem( LSFSP) with equal-size sub-lots. In the proposed iFOA,a solution is encoded as two vectors to determine the splitting of jobs and the sequence of the sub-lots simultaneously. Based on the encoding scheme,three kinds of neighborhoods are developed for generating new solutions. To well balance the exploitation and exploration,two main search procedures are designed within the evolutionary search framework of the iFOA,including the neighborhood-based search( smell-vision-based search) and the global cooperation-based search. Finally,numerical testing results are provided,and the comparisons demonstrate the effectiveness of the proposed iFOA for solving the LSFSP. 展开更多
关键词 fruit fly optimization algorithm(foa) lot-streaming flowshop scheduling job splitting neighborhood-based search cooperation-based search
下载PDF
An Optimization Algorithm for Service Composition Based on an Improved FOA 被引量:12
2
作者 Yiwen Zhang Guangming Cui +2 位作者 Yan Wang Xing Guo Shu Zhao 《Tsinghua Science and Technology》 SCIE EI CAS CSCD 2015年第1期90-99,共10页
Large-scale service composition has become an important research topic in Service-Oriented Computing(SOC). Quality of Service(Qo S) has been mostly applied to represent nonfunctional properties of web services and... Large-scale service composition has become an important research topic in Service-Oriented Computing(SOC). Quality of Service(Qo S) has been mostly applied to represent nonfunctional properties of web services and to differentiate those with the same functionality. Many studies for measuring service composition in terms of Qo S have been completed. Among current popular optimization methods for service composition, the exhaustion method has some disadvantages such as requiring a large number of calculations and poor scalability. Similarly,the traditional evolutionary computation method has defects such as exhibiting slow convergence speed and falling easily into the local optimum. In order to solve these problems, an improved optimization algorithm, WS FOA(Web Service composition based on Fruit Fly Optimization Algorithm) for service composition, was proposed, on the basis of the modeling of service composition and the FOA. Simulated experiments demonstrated that the algorithm is effective, feasible, stable, and possesses good global searching ability. 展开更多
关键词 service composition Fruit Fly Optimization algorithmfoa Quality of Service(QoS) index
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部