机场飞行区现使用的场面监视方法存在着定位偏差较大、不稳定、易跳变、皆为点源定位等问题。针对这些问题,设计了基于视觉图像的飞行区监视方法,实现快速准确的目标检测和轮廓定位,使飞行区监视更加稳定精确。提出了一种基于MobileNetV...机场飞行区现使用的场面监视方法存在着定位偏差较大、不稳定、易跳变、皆为点源定位等问题。针对这些问题,设计了基于视觉图像的飞行区监视方法,实现快速准确的目标检测和轮廓定位,使飞行区监视更加稳定精确。提出了一种基于MobileNetV3和YOLOv5的网络模型(以下称为MobileNetV3-YOLOv5),即在YOLOv5的主干中使用MobileNetV3,来提高对目标的检测速度和准确度;提出了一种基于优化特征点提取的改进定向快速旋转简报(Oriented FAST and Rotated BRIEF,ORB)算法,将图像分割成多个区域,分别提取每个区域的特征点,从而提高目标识别框内区域的特征点识别数量,再进行特征点聚类筛选,最后根据识别目标类型采用最小包围盒进行轮廓划分,得到目标的轮廓定位。试验结果表明:MobileNetV3-YOLOv5方法对比原始YOLOv5模型,在识别目标准确率方面提升5百分点,在效率方面提升14张/s;同时在0~60 m的范围内,轮廓估计误差仅为2.9%;体现了所提出的监视方法的有效性,可以提升飞行区监视定位准确性和运行安全性。展开更多
为了针对性地制定后续优化措施,以降低多机场终端区内航班延误所带来的不利影响,并提高多机场系统内各机场的运营效率,进行多机场终端区航班延误的预测研究。首先,考虑多机场终端区交通态势对航班延误的影响,在对多机场终端区交通态势...为了针对性地制定后续优化措施,以降低多机场终端区内航班延误所带来的不利影响,并提高多机场系统内各机场的运营效率,进行多机场终端区航班延误的预测研究。首先,考虑多机场终端区交通态势对航班延误的影响,在对多机场终端区交通态势进行分析的基础上,建立6个描述终端区交通态势的指标。接着,构建反向传播(back propagation,BP)神经网络航班延误预测模型,将终端区交通态势指标、航班信息和天气环境数据等作为输入,航班延误时间作为输出,并利用粒子群优化算法(particle swarm optimization,PSO)优化BP神经网络进行训练。通过实例验证和分析,基于多机场终端区交通态势的航班延误预测能够有效提高预测准确率,同时,通过粒子群优化BP神经网络的预测模型预测准确率均高于一般的考虑交通态势的BP和遗传算法优化的BP神经网络模型(genetic algorithm and back propagation,GA-BP)。展开更多
文摘机场飞行区现使用的场面监视方法存在着定位偏差较大、不稳定、易跳变、皆为点源定位等问题。针对这些问题,设计了基于视觉图像的飞行区监视方法,实现快速准确的目标检测和轮廓定位,使飞行区监视更加稳定精确。提出了一种基于MobileNetV3和YOLOv5的网络模型(以下称为MobileNetV3-YOLOv5),即在YOLOv5的主干中使用MobileNetV3,来提高对目标的检测速度和准确度;提出了一种基于优化特征点提取的改进定向快速旋转简报(Oriented FAST and Rotated BRIEF,ORB)算法,将图像分割成多个区域,分别提取每个区域的特征点,从而提高目标识别框内区域的特征点识别数量,再进行特征点聚类筛选,最后根据识别目标类型采用最小包围盒进行轮廓划分,得到目标的轮廓定位。试验结果表明:MobileNetV3-YOLOv5方法对比原始YOLOv5模型,在识别目标准确率方面提升5百分点,在效率方面提升14张/s;同时在0~60 m的范围内,轮廓估计误差仅为2.9%;体现了所提出的监视方法的有效性,可以提升飞行区监视定位准确性和运行安全性。
文摘为了针对性地制定后续优化措施,以降低多机场终端区内航班延误所带来的不利影响,并提高多机场系统内各机场的运营效率,进行多机场终端区航班延误的预测研究。首先,考虑多机场终端区交通态势对航班延误的影响,在对多机场终端区交通态势进行分析的基础上,建立6个描述终端区交通态势的指标。接着,构建反向传播(back propagation,BP)神经网络航班延误预测模型,将终端区交通态势指标、航班信息和天气环境数据等作为输入,航班延误时间作为输出,并利用粒子群优化算法(particle swarm optimization,PSO)优化BP神经网络进行训练。通过实例验证和分析,基于多机场终端区交通态势的航班延误预测能够有效提高预测准确率,同时,通过粒子群优化BP神经网络的预测模型预测准确率均高于一般的考虑交通态势的BP和遗传算法优化的BP神经网络模型(genetic algorithm and back propagation,GA-BP)。