期刊文献+
共找到2篇文章
< 1 >
每页显示 20 50 100
Autonomous Formation Flight Control of Large-Sized Flapping-Wing Flying Robots Based on Leader–Follower Strategy
1
作者 Hui Xu Yuanpeng Wang +2 位作者 Erzhen Pan Wenfu Xu Dong Xue 《Journal of Bionic Engineering》 SCIE EI CSCD 2023年第6期2542-2558,共17页
Birds in nature exhibit excellent long-distance flight capabilities through formation flight,which could reduce energy consumption and improve flight efficiency.Inspired by the biological habits of birds,this paper pr... Birds in nature exhibit excellent long-distance flight capabilities through formation flight,which could reduce energy consumption and improve flight efficiency.Inspired by the biological habits of birds,this paper proposes an autonomous formation flight control method for Large-sized Flapping-Wing Flying Robots(LFWFRs),which can enhance their search range and flight efficiency.First,the kinematics model for LFWFRs is established.Then,an autonomous flight controller based on this model is designed,which has multiple flight control modes,including attitude stabilization,course keeping,hovering,and so on.Second,a formation flight control method is proposed based on the leader–follower strategy and periodic characteristics of flapping-wing flight.The up and down fluctuation of the fuselage of each LFWFR during wing flapping is considered in the control algorithm to keep the relative distance,which overcomes the trajectory divergence caused by sensor delay and fuselage fluctuation.Third,typical formation flight modes are realized,including straight formation,circular formation,and switching formation.Finally,the outdoor formation flight experiment is carried out,and the proposed autonomous formation flight control method is verified in real environment. 展开更多
关键词 BIONIC Large-sized flapping-wing flying robot HIT-Phoenix Periodic flight characteristics Formation flight Leader follower strategy
原文传递
Design and Analysis of Biomimetic Nose Cone for Morphing of Aerospace Vehicle 被引量:8
2
作者 Jieliang Zhao Shaoze Yan +2 位作者 Liren Deng He Huang Yueming Liu 《Journal of Bionic Engineering》 SCIE EI CSCD 2017年第2期317-326,共10页
Morphing capability is absolutely vital for aerospace vehicle to gain predominant functions of aerodynamics, mobility and flight control while piercing and re-entering the atmosphere. However, the challenge for existi... Morphing capability is absolutely vital for aerospace vehicle to gain predominant functions of aerodynamics, mobility and flight control while piercing and re-entering the atmosphere. However, the challenge for existing aerospace vehicle remains to change its structure of nose cone agilely. This paper carries out a lot of observational experiments on honeybee's abdomen which enhances the flight characteristics of honeybee by adjusting its biomorphic shape. A morphing structure is adopted from honeybee's abdomen to improve both the axial scalability and bending properties of aerospace vehicle, which can lead to the super-maneuver flight performance. Combined with the methods of optimum design and topology, a new bionic morphing structure is proposed and applied to the design of morphing nose cone of aerospace vehicle. Furthermore, simulations are conducted to optimize the structural parameters of morphing nose cone. This concept design of biomimetic nose cone will provide an efficient way for aerospace vehicle to reduce the aerodynamic drag. 展开更多
关键词 bio-inspired design HONEYBEE morphing nose cone aerospace vehicle flight characteristic
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部