To alleviate the chattering problem, a new type of fuzzy global sliding mode controller (FGSMC) is presented. In this controller, the switching gain is estimated by fuzzy logic system based on the reachable conditio...To alleviate the chattering problem, a new type of fuzzy global sliding mode controller (FGSMC) is presented. In this controller, the switching gain is estimated by fuzzy logic system based on the reachable conditions of sliding mode controller(SMC), and genetic algorithm (GA) is used to optimize scaling factor of the switching gain, thus the switch chattering of SMC can be alleviated. Moreover, global sliding mode is realized by designing an exponential dynamic sliding surface. Simulation and real-time application for flight simulator servo system with Lugre friction are given to indicate that the proposed controller can guarantee high robust performance all the time and can alleviate chattering phenomenon effectively.展开更多
To solve the flight control problem for unmanned hypersonic vehicles,a novel intelligent optimized control method is proposed.A flight control system based on integral separated proportional-integral-derivative(PID)co...To solve the flight control problem for unmanned hypersonic vehicles,a novel intelligent optimized control method is proposed.A flight control system based on integral separated proportional-integral-derivative(PID)control is designed for hypersonic vehicle,and an improved shuffled frog leaping algorithm is presented to optimize the control parameters.A nonlinear model of hypersonic vehicle is established to examine the dynamic characteristics achieved by the flight control system.Simulation results demonstrate that the proposed optimized controller can effectively achieve better flight control performance than the traditional controller.展开更多
This paper proposes a method of using multi controllers to control supermaneuverable aircraft. A nonlinear dynamic inversion controller is used for supermaneuver. A gain scheduled controller is used for routine man...This paper proposes a method of using multi controllers to control supermaneuverable aircraft. A nonlinear dynamic inversion controller is used for supermaneuver. A gain scheduled controller is used for routine maneuver. A switch algorithm is designed to switch the controllers. The flight envelopes of the controllers are different but have a common area in which the controllers are switched from one to the other. In the common area, some special boundaries are selected to decide switch conditions. The controllers all use vector thrust for lower velocity maneuver control. Unlike the variation structure theory to use a single boundary, this paper uses two boundaries for switching between the two controllers. One boundary is used for switching from dynamic inversion to gain scheduling, while the other is used for switching from gain scheduling to dynamic inversion. This can effectively avoid the system vibration caused by switching repeatedly at a single boundary. The method is very easy for engineering. It can reduce the risk of design of the supermaneuverable aircraft.展开更多
基金This project is supported by Aeronautics Foundation of China (No. 00E51022)
文摘To alleviate the chattering problem, a new type of fuzzy global sliding mode controller (FGSMC) is presented. In this controller, the switching gain is estimated by fuzzy logic system based on the reachable conditions of sliding mode controller(SMC), and genetic algorithm (GA) is used to optimize scaling factor of the switching gain, thus the switch chattering of SMC can be alleviated. Moreover, global sliding mode is realized by designing an exponential dynamic sliding surface. Simulation and real-time application for flight simulator servo system with Lugre friction are given to indicate that the proposed controller can guarantee high robust performance all the time and can alleviate chattering phenomenon effectively.
基金supported in part by the National Natural Science Foundation of China(No.61304223)the Specialized Research Fund for the Doctoral Program of Higher Education(No.20123218120015)the Fundamental Research Funds for the Central Universities(No.NZ2015206)
文摘To solve the flight control problem for unmanned hypersonic vehicles,a novel intelligent optimized control method is proposed.A flight control system based on integral separated proportional-integral-derivative(PID)control is designed for hypersonic vehicle,and an improved shuffled frog leaping algorithm is presented to optimize the control parameters.A nonlinear model of hypersonic vehicle is established to examine the dynamic characteristics achieved by the flight control system.Simulation results demonstrate that the proposed optimized controller can effectively achieve better flight control performance than the traditional controller.
文摘This paper proposes a method of using multi controllers to control supermaneuverable aircraft. A nonlinear dynamic inversion controller is used for supermaneuver. A gain scheduled controller is used for routine maneuver. A switch algorithm is designed to switch the controllers. The flight envelopes of the controllers are different but have a common area in which the controllers are switched from one to the other. In the common area, some special boundaries are selected to decide switch conditions. The controllers all use vector thrust for lower velocity maneuver control. Unlike the variation structure theory to use a single boundary, this paper uses two boundaries for switching between the two controllers. One boundary is used for switching from dynamic inversion to gain scheduling, while the other is used for switching from gain scheduling to dynamic inversion. This can effectively avoid the system vibration caused by switching repeatedly at a single boundary. The method is very easy for engineering. It can reduce the risk of design of the supermaneuverable aircraft.