期刊文献+
共找到2篇文章
< 1 >
每页显示 20 50 100
A Hybrid Method Combining Improved K-means Algorithm with BADA Model for Generating Nominal Flight Profiles
1
作者 Tang Xinmin Gu Junwei +2 位作者 Shen Zhiyuan Chen Ping Li Bo 《Transactions of Nanjing University of Aeronautics and Astronautics》 EI CSCD 2016年第4期414-424,共11页
A high-precision nominal flight profile,involving controllers′intentions is critical for 4Dtrajectory estimation in modern automatic air traffic control systems.We proposed a novel method to effectively improve the a... A high-precision nominal flight profile,involving controllers′intentions is critical for 4Dtrajectory estimation in modern automatic air traffic control systems.We proposed a novel method to effectively improve the accuracy of the nominal flight profile,including the nominal altitude profile and the speed profile.First,considering the characteristics of trajectory data,we developed an improved K-means algorithm.The approach was to measure the similarity between different altitude profiles by integrating the space warp edit distance algorithm,thereby to acquire several fitted nominal flight altitude profiles.This approach breaks the constraints of traditional K-means algorithms.Second,to eliminate the influence of meteorological factors,we introduced historical gridded binary data to determine the en-route wind speed and temperature via inverse distance weighted interpolation.Finally,we facilitated the true airspeed determined by speed triangle relationships and the calibrated airspeed determined by aircraft data model to extract a more accurate nominal speed profile from each cluster,therefore we could describe the airspeed profiles above and below the airspeed transition altitude,respectively.Our experimental results showed that the proposed method could obtain a highly accurate nominal flight profile,which reflects the actual aircraft flight status. 展开更多
关键词 air transportation flight profile K-means algorithm space warp edit distance(SWED)algorithm trajectory prediction
下载PDF
Review of control and guidance technology on hypersonic vehicle 被引量:13
2
作者 Yibo DING Xiaokui YUE +1 位作者 Guangshan CHEN Jiashun SI 《Chinese Journal of Aeronautics》 SCIE EI CAS CSCD 2022年第7期1-18,共18页
Air-breathing hypersonic vehicle has great military and potential economic value due to its characteristics:high velocity,long range,quick response.Therefore,the development of hypersonic vehicle and its guidance and ... Air-breathing hypersonic vehicle has great military and potential economic value due to its characteristics:high velocity,long range,quick response.Therefore,the development of hypersonic vehicle and its guidance and control technology are reviewed in this paper.Firstly,the development and classification of hypersonic vehicles around the world are summarized,and the geometric configuration and mission profile of typical air-breathing hypersonic vehicle are given.Secondly,the control difficulties of air-breathing hypersonic vehicle are introduced,including integrated design of engine and fuselage,static instability,strong nonlinearity,uncertain aerodynamic parameters,etc.According to its control requirements,the control methods considering external disturbance,fault-tolerant control methods,anti-saturation methods,and prescribed performance control methods considering transient performance constraints are summarized respectively.The classification and comparison of various control methods are given,and the frontiers of theoretical development are analyzed.Finally,considering the effects of composite disturbances,the design of terminal guidance law under multiple constraints is overviewed,including guidance law with angle constraint,velocity constraint,acceleration constraint and time constraint.Similarly,the classification of guidance law design methods under different constraints,their advantages as well as the future development trend and requirements are introduced. 展开更多
关键词 Classification of hypersonic vehicles Control equipmentaerospace applications flight profiles Guidance strategy Hypersonic vehicles
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部