In order to alleviate the flight congestion in terminal areas(TMAs),it is of great significance to develop an effective method.An arrival sequencing model based on the serial point merge systems(PMSs)is constructed to...In order to alleviate the flight congestion in terminal areas(TMAs),it is of great significance to develop an effective method.An arrival sequencing model based on the serial point merge systems(PMSs)is constructed to improve the operational benefits of arrival flights.The approach of first come first service(FCFS)combined with the method of constraint position shift(CPS)is used as the sequencing strategy.Through the simulated annealing algorithm,the results show that the arrival flights sequencing through serial PMSs has significant advantages in reducing delays and increasing runway throughput especially in the case of high traffic loads.The proposed approach is conducive in promoting the implementation and application of serial PMS.展开更多
At 8:30 on October 27, the first international flight from Shanghai to Singapore MU576 took off at Pudong Airport. Thus,all international flights and those to Hong Kong and Macao were all moved to Pudong Airport. Besi...At 8:30 on October 27, the first international flight from Shanghai to Singapore MU576 took off at Pudong Airport. Thus,all international flights and those to Hong Kong and Macao were all moved to Pudong Airport. Besides internationalflights and Hong Kong and Macao flights, the eastward moving also cover some domestic flights, namely flights fromSanya, Haikou, Guangzhou, Shenzhen, Zhuhai, Qingdao, Yantai, Weihai, Weifang and so on in Northwest China, Mid-South China,and East China to Shanghai. After the eastward moving, the flight distribution at two airports in Shanghai changed greatly.展开更多
A new analysis of a previously studied traveling agent model, showed that there is a relation between the degree of homogeneity of the medium where the agents move, agent motion patterns, and the noise generated from ...A new analysis of a previously studied traveling agent model, showed that there is a relation between the degree of homogeneity of the medium where the agents move, agent motion patterns, and the noise generated from their displacements. We proved that for a particular value of homogeneity, the system self organizes in a state where the agents carry out Lévy walks and the displacement signal corresponds to 1/f noise. Using probabilistic arguments, we conjectured that 1/f noise is a fingerprint of a statistical phase transition, from randomness (disorder) to predictability (order), and that it emerges from the contextuality nature of the system which generates it.展开更多
<div style="text-align:justify;"> This paper mainly studies the problem of irregular flights recovery under uncertain conditions. Based on the analysis of the uncertain factors affecting the flight, ta...<div style="text-align:justify;"> This paper mainly studies the problem of irregular flights recovery under uncertain conditions. Based on the analysis of the uncertain factors affecting the flight, taking the total delay time and the total cost of flight delay as the objective function, and considering the constraints of flight plan and passenger journey, an uncertain objective programming model is constructed. Finally, taking OVS airport temporarily closed due to bad weather as an example, the results show that better quality optimization scheme can be obtained by integrating passenger recovery with narrow sense flight recovery stage and implementing integrated recovery. </div>展开更多
At 22:41 Beijing time on April 20,a LM-3B launch vehicle lifted off from the Xichang Satellite Launch Center and successfully launched the 44th satellite of the BeiDou Navigation Satellite System into its preset orbit...At 22:41 Beijing time on April 20,a LM-3B launch vehicle lifted off from the Xichang Satellite Launch Center and successfully launched the 44th satellite of the BeiDou Navigation Satellite System into its preset orbit.This was the 100th flight of the LM-3A carrier rocket family and the 302nd flight of the Long March series launch vehicle.展开更多
In order to meet the needs of collaborative decision making,considering the different demands of air traffic control units,airlines,airports and passengers in various traffic scenarios,the joint scheduling problem of ...In order to meet the needs of collaborative decision making,considering the different demands of air traffic control units,airlines,airports and passengers in various traffic scenarios,the joint scheduling problem of arrival and departure flights is studied systematically.According to the matching degree of capacity and flow,it is determined that the traffic state of arrival/departure operation in a certain period is peak or off-peak.The demands of all parties in each traffic state are analyzed,and the mathematical models of arrival/departure flight scheduling in each traffic state are established.Aiming at the four kinds of joint operation traffic scenarios of arrival and departure,the corresponding bi-level programming models for joint scheduling of arrival and departure flights are established,respectively,and the elitism genetic algorithm is designed to solve the models.The results show that:Compared with the first-come-firstserved method,in the scenarios of arrival peak&departure off-peak and arrival peak&departure peak,the departure flight equilibrium satisfaction is improved,and the runway occupation time of departure flight flow is reduced by 38.8%.In the scenarios of arrival off-peak&departure off-peak and departure peak&arrival off-peak,the arrival flight equilibrium delay time is significantly reduced,the departure flight equilibrium satisfaction is improved by 77.6%,and the runway occupation time of departure flight flow is reduced by 46.6%.Compared with other four kinds of strategies,the optimal scheduling method can better balance fairness and efficiency,so the scheduling results are more reasonable.展开更多
Birds and bats retract and stretch their wings dynamically during each flap in level flights, implying intriguing mechanisms for the aerodynamic performance improvement of flapping wings. A numerical investigation int...Birds and bats retract and stretch their wings dynamically during each flap in level flights, implying intriguing mechanisms for the aerodynamic performance improvement of flapping wings. A numerical investigation into the aerodynamic effects of such bio-inspired concept in forward flights has been performed based on a three-dimensional wing in plunging motion and a twosection wing in flapping motion. The currently considered Reynolds number and Strouhal number are Re=1.5×10^(5) and St=0.3, respectively. During the research, the mean angle of attack is varied in relatively wide ranges to achieve lift-thrust interconversion for the wings. The conclusive results show that dynamical spanwise retraction and stretch has induced three absolutely desirable scenarios for the oscillating wings in forward flights, namely producing more lift and consuming less power for a given thrust generation, producing more thrust and consuming less power for a given lift generation, and producing more lift and more thrust while consuming less power. Furthermore,the morphing wings have alleviated periodical aerodynamic load fluctuations compared with the non-morphing baseline. The mechanism of the aerodynamic effects of the bionic morphing mode is analyzed with the aid of field visualization. The current article is the first to reveal the absolute advantages of the bionic spanwise morphing. Hopefully, it may help comprehend the behaviors of natural fliers and provide inspirations for performance enhancement of micro artificial flappingwing vehicles.展开更多
Natural events have had a significant impact on overall flight activity,and the aviation industry plays a vital role in helping society cope with the impact of these events.As one of the most impactful weather typhoon...Natural events have had a significant impact on overall flight activity,and the aviation industry plays a vital role in helping society cope with the impact of these events.As one of the most impactful weather typhoon seasons appears and continues,airlines operating in threatened areas and passengers having travel plans during this time period will pay close attention to the development of tropical storms.This paper proposes a deep multimodal fusion and multitasking trajectory prediction model that can improve the reliability of typhoon trajectory prediction and reduce the quantity of flight scheduling cancellation.The deep multimodal fusion module is formed by deep fusion of the feature output by multiple submodal fusion modules,and the multitask generation module uses longitude and latitude as two related tasks for simultaneous prediction.With more dependable data accuracy,problems can be analysed rapidly and more efficiently,enabling better decision-making with a proactive versus reactive posture.When multiple modalities coexist,features can be extracted from them simultaneously to supplement each other’s information.An actual case study,the typhoon Lichma that swept China in 2019,has demonstrated that the algorithm can effectively reduce the number of unnecessary flight cancellations compared to existing flight scheduling and assist the new generation of flight scheduling systems under extreme weather.展开更多
Animals must strike a balance between anti-predation behavior and other essential behaviors,such as foraging.Within the same species,strategies may vary on individuals’risk-taking preferences,and in this process the ...Animals must strike a balance between anti-predation behavior and other essential behaviors,such as foraging.Within the same species,strategies may vary on individuals’risk-taking preferences,and in this process the environment is a determinant,in addition to predator regime.The Crested Ibis(Nipponia nippon)exhibits such tendency.This is an endangered species,once inhabiting exclusively in China’s Qinling Mountain.This used to be the sole remaining wild population.However,over recent decades,this population has expanded.A portion has relocated to breed in the lower plain area,which is characterized by elevated level of human activities and landscape complexity.We used flight initiation distance(FID)as an indicator of the ibises’risk-taking preference,particularly their response to human proximity.Additionally,we examined the environmental factors influencing their foraging site selection,including altitude,terrain openness,human activity intensity and human construction.Our findings revealed a significantly shorter FID among individuals relocating to plain habitats,indicating a higher tolerance of human proximity.The results showed that FID decreased with distance to the nearest human settlement.Another finding is that FID was independent of instant human activity intensity and environmental factors(altitude and terrain openness).These different may arise from various combinations of human activity,predation risk,and food abundance within the two habitats.These results provide insights into the in situ conservation of the threatened species within the context of global urbanization.展开更多
Prey species may have their own optimal escape strategy to balance predation risks and the energetic cost of fleeing.Some species have an advantage when maintaining a short fleeing distance,while others may favour an ...Prey species may have their own optimal escape strategy to balance predation risks and the energetic cost of fleeing.Some species have an advantage when maintaining a short fleeing distance,while others may favour an earlier escape based on microhabitat,size,or body condition.Here,we examined the escape behaviour of the three syntopic Northeast Asian anuran species:Mongolian toads(Strauchbufo raddei),Amur brown frogs(Rana amurensis),and Japanese treefrogs(Dryophytes japonicus)in Mongolia,Russia,China and DPR Korea.We examined flight initiation distance(FID;the distance from a potential predator to the point when the individual starts to flee)and distance fled(DF;distance between flight initiation and flight termination points)of each species and the effects of microhabitat,sex,and body size.Strauchbufo raddei and R.amurensis had a longer FID than D.japonicus,and S.raddei also had a longer DF than D.japonicus.These trends remained similar when dividing FID and DF by a size proxy(snout-vent length)for all individuals.This suggests that the treefrog D.japonicus used a strategy to stay immobile even when they were detected,and the toad S.raddei reacted quicker and more sensitively to predators despite the presence of toxin.Female S.raddei had a significantly longer FID than males suggesting that females are more sensitive to predation risk in this species,but body size was not significant for any of the three species.Our results indicate that the three sympatric species have different escaping strategies,likely related to differences in physiology and crypticity.展开更多
In this paper,an intelligent control method applying on numerical virtual flight is proposed.The proposed algorithm is verified and evaluated by combining with the case of the basic finner projectile model and shows a...In this paper,an intelligent control method applying on numerical virtual flight is proposed.The proposed algorithm is verified and evaluated by combining with the case of the basic finner projectile model and shows a good application prospect.Firstly,a numerical virtual flight simulation model based on overlapping dynamic mesh technology is constructed.In order to verify the accuracy of the dynamic grid technology and the calculation of unsteady flow,a numerical simulation of the basic finner projectile without control is carried out.The simulation results are in good agreement with the experiment data which shows that the algorithm used in this paper can also be used in the design and evaluation of the intelligent controller in the numerical virtual flight simulation.Secondly,combined with the real-time control requirements of aerodynamic,attitude and displacement parameters of the projectile during the flight process,the numerical simulations of the basic finner projectile’s pitch channel are carried out under the traditional PID(Proportional-Integral-Derivative)control strategy and the intelligent PID control strategy respectively.The intelligent PID controller based on BP(Back Propagation)neural network can realize online learning and self-optimization of control parameters according to the acquired real-time flight parameters.Compared with the traditional PID controller,the concerned control variable overshoot,rise time,transition time and steady state error and other performance indicators have been greatly improved,and the higher the learning efficiency or the inertia coefficient,the faster the system,the larger the overshoot,and the smaller the stability error.The intelligent control method applying on numerical virtual flight is capable of solving the complicated unsteady motion and flow with the intelligent PID control strategy and has a strong promotion to engineering application.展开更多
In this paper,to study the mechanical responses of a solid propellant subjected to ultrahigh acceleration overload during the gun-launch process,specifically designed projectile flight tests with an onboard measuremen...In this paper,to study the mechanical responses of a solid propellant subjected to ultrahigh acceleration overload during the gun-launch process,specifically designed projectile flight tests with an onboard measurement system were performed.Two projectiles containing dummy HTPB propellant grains were successfully recovered after the flight tests with an ultrahigh acceleration overload value of 8100 g.The onboard-measured time-resolved axial displacement,contact stress and overload values were successfully obtained and analysed.Uniaxial compression tests of the dummy HTPB propellant used in the gunlaunched tests were carried out at low and intermediate strain rates to characterize the propellant's dynamic properties.A linear viscoelastic constitutive model was employed and applied in finite-element simulations of the projectile-launching process.During the launch process,the dummy propellant grain exhibited large deformation due to the high acceleration overload,possibly leading to friction between the motor case and propellant grain.The calculated contact stress showed good agreement with the experimental results,though discrepancies in the overall displacement of the dummy propellant grain were observed.The dynamic mechanical response process of the dummy propellant grain was analysed in detail.The results can be used to estimate the structural integrity of the analysed dummy propellant grain during the gun-launch process.展开更多
This paper investigates the data collection in an unmanned aerial vehicle(UAV)-aided Internet of Things(IoT) network, where a UAV is dispatched to collect data from ground sensors in a practical and accurate probabili...This paper investigates the data collection in an unmanned aerial vehicle(UAV)-aided Internet of Things(IoT) network, where a UAV is dispatched to collect data from ground sensors in a practical and accurate probabilistic line-of-sight(LoS) channel. Especially, access points(APs) are introduced to collect data from some sensors in the unlicensed band to improve data collection efficiency. We formulate a mixed-integer non-convex optimization problem to minimize the UAV flight time by jointly designing the UAV 3D trajectory and sensors’ scheduling, while ensuring the required amount of data can be collected under the limited UAV energy. To solve this nonconvex problem, we recast the objective problem into a tractable form. Then, the problem is further divided into several sub-problems to solve iteratively, and the successive convex approximation(SCA) scheme is applied to solve each non-convex subproblem. Finally,the bisection search is adopted to speed up the searching for the minimum UAV flight time. Simulation results verify that the UAV flight time can be shortened by the proposed method effectively.展开更多
The influence maximization problem aims to select a small set of influential nodes, termed a seed set, to maximize their influence coverage in social networks. Although the methods that are based on a greedy strategy ...The influence maximization problem aims to select a small set of influential nodes, termed a seed set, to maximize their influence coverage in social networks. Although the methods that are based on a greedy strategy can obtain good accuracy, they come at the cost of enormous computational time, and are therefore not applicable to practical scenarios in large-scale networks. In addition, the centrality heuristic algorithms that are based on network topology can be completed in relatively less time. However, they tend to fail to achieve satisfactory results because of drawbacks such as overlapped influence spread. In this work, we propose a discrete two-stage metaheuristic optimization combining quantum-behaved particle swarm optimization with Lévy flight to identify a set of the most influential spreaders. According to the framework,first, the particles in the population are tasked to conduct an exploration in the global solution space to eventually converge to an acceptable solution through the crossover and replacement operations. Second, the Lévy flight mechanism is used to perform a wandering walk on the optimal candidate solution in the population to exploit the potentially unidentified influential nodes in the network. Experiments on six real-world social networks show that the proposed algorithm achieves more satisfactory results when compared to other well-known algorithms.展开更多
The modular system can change its physical structure by self-assembly and self-disassembly between modules to dynamically adapt to task and environmental requirements. Recognizing the adaptive capability of modular sy...The modular system can change its physical structure by self-assembly and self-disassembly between modules to dynamically adapt to task and environmental requirements. Recognizing the adaptive capability of modular systems, we introduce a modular reconfigurable flight array(MRFA) to pursue a multifunction aircraft fitting for diverse tasks and requirements,and investigate the attitude control and the control allocation problem by using the modular reconfigurable flight array as a platform. First, considering the variable and irregular topological configuration of the modular array, a center-of-mass-independent flight array dynamics model is proposed to allow control allocation under over-actuated situations. Secondly, in order to meet the stable, fast and accurate attitude tracking performance of the MRFA, a fixed-time convergent sliding mode controller with state-dependent variable exponent coefficients is proposed to ensure fast convergence rate both away from and near the system equilibrium point without encountering the singularity. It is shown that the controller also has fixed-time convergent characteristics even in the presence of external disturbances. Finally,simulation results are provided to demonstrate the effectiveness of the proposed modeling and control strategies.展开更多
The internal microbial diversity and small molecular metabolites of Nuodeng ham in different processing years(the first,second and third year sample)were analyzed by high-throughput sequencing technology and gas chrom...The internal microbial diversity and small molecular metabolites of Nuodeng ham in different processing years(the first,second and third year sample)were analyzed by high-throughput sequencing technology and gas chromatography-time of flight mass spectrography(GC-TOF-MS)to study the effects of microorganisms and small molecular metabolites on the quality of ham in different processing years.The results showed that the dominant bacteria phyla of Nuodeng ham in different processing years were Proteobacteria and Firmicutes,the dominant fungi phyla were Ascomycota and Basidiomycota,while Staphylococcus and Aspergillus were the dominant bacteria and fungi of Nuodeng ham,respectively.Totally,252 kinds of small molecular metabolites were identified from Nuodeng ham in different processing years,and 12 different metabolites were screened through multivariate statistical analysis.Further metabolic pathway analysis showed that 23 metabolic pathways were related to ham fermentation,of which 8 metabolic pathways had significant effects on ham fermentation(Impact>0.01,P<0.05).The content of L-proline,phenyllactic acid,L-lysine,carnosine,taurine,D-proline,betaine and creatine were significantly positively correlated with the relative abundance of Staphylococcus and Serratia,but negatively correlated with the relative abundance of Halomonas,Aspergillus and Yamadazyma.展开更多
The design of mini-missiles(MMs)presents several novel challenges.The stringent mission requirement to reach a target with a certain precision imposes a high guidance precision.The miniaturization of the size of MMs m...The design of mini-missiles(MMs)presents several novel challenges.The stringent mission requirement to reach a target with a certain precision imposes a high guidance precision.The miniaturization of the size of MMs makes the design of the guidance,navigation,and control(GNC)have a larger-thanbefore impact on the main-body design(shape,motor,and layout design)and its design objective,i.e.,flight performance.Pursuing a trade-off between flight performance and guidance precision,all the relevant interactions have to be accounted for in the design of the main body and the GNC system.Herein,a multi-objective and multidisciplinary design optimization(MDO)is proposed.Disciplines pertinent to motor,aerodynamics,layout,trajectory,flight dynamics,control,and guidance are included in the proposed MDO framework.The optimization problem seeks to maximize the range and minimize the guidance error.The problem is solved by using the nondominated sorting genetic algorithm II.An optimum design that balances a longer range with a smaller guidance error is obtained.Finally,lessons learned about the design of the MM and insights into the trade-off between flight performance and guidance precision are given by comparing the optimum design to a design provided by the traditional approach.展开更多
基金supported by the National Natural Science Foundation of China(No.U1933119)the Foundation of Graduate Innovation Center in Nanjing University of Aeronautics and Astronautics(No.xcxjh20210703)
文摘In order to alleviate the flight congestion in terminal areas(TMAs),it is of great significance to develop an effective method.An arrival sequencing model based on the serial point merge systems(PMSs)is constructed to improve the operational benefits of arrival flights.The approach of first come first service(FCFS)combined with the method of constraint position shift(CPS)is used as the sequencing strategy.Through the simulated annealing algorithm,the results show that the arrival flights sequencing through serial PMSs has significant advantages in reducing delays and increasing runway throughput especially in the case of high traffic loads.The proposed approach is conducive in promoting the implementation and application of serial PMS.
文摘At 8:30 on October 27, the first international flight from Shanghai to Singapore MU576 took off at Pudong Airport. Thus,all international flights and those to Hong Kong and Macao were all moved to Pudong Airport. Besides internationalflights and Hong Kong and Macao flights, the eastward moving also cover some domestic flights, namely flights fromSanya, Haikou, Guangzhou, Shenzhen, Zhuhai, Qingdao, Yantai, Weihai, Weifang and so on in Northwest China, Mid-South China,and East China to Shanghai. After the eastward moving, the flight distribution at two airports in Shanghai changed greatly.
文摘A new analysis of a previously studied traveling agent model, showed that there is a relation between the degree of homogeneity of the medium where the agents move, agent motion patterns, and the noise generated from their displacements. We proved that for a particular value of homogeneity, the system self organizes in a state where the agents carry out Lévy walks and the displacement signal corresponds to 1/f noise. Using probabilistic arguments, we conjectured that 1/f noise is a fingerprint of a statistical phase transition, from randomness (disorder) to predictability (order), and that it emerges from the contextuality nature of the system which generates it.
文摘<div style="text-align:justify;"> This paper mainly studies the problem of irregular flights recovery under uncertain conditions. Based on the analysis of the uncertain factors affecting the flight, taking the total delay time and the total cost of flight delay as the objective function, and considering the constraints of flight plan and passenger journey, an uncertain objective programming model is constructed. Finally, taking OVS airport temporarily closed due to bad weather as an example, the results show that better quality optimization scheme can be obtained by integrating passenger recovery with narrow sense flight recovery stage and implementing integrated recovery. </div>
文摘At 22:41 Beijing time on April 20,a LM-3B launch vehicle lifted off from the Xichang Satellite Launch Center and successfully launched the 44th satellite of the BeiDou Navigation Satellite System into its preset orbit.This was the 100th flight of the LM-3A carrier rocket family and the 302nd flight of the Long March series launch vehicle.
基金supported by Nanjing University of Aeronautics and Astronautics Graduate Innovation Base(Laboratory)Open Fund(No.kfjj20200717).
文摘In order to meet the needs of collaborative decision making,considering the different demands of air traffic control units,airlines,airports and passengers in various traffic scenarios,the joint scheduling problem of arrival and departure flights is studied systematically.According to the matching degree of capacity and flow,it is determined that the traffic state of arrival/departure operation in a certain period is peak or off-peak.The demands of all parties in each traffic state are analyzed,and the mathematical models of arrival/departure flight scheduling in each traffic state are established.Aiming at the four kinds of joint operation traffic scenarios of arrival and departure,the corresponding bi-level programming models for joint scheduling of arrival and departure flights are established,respectively,and the elitism genetic algorithm is designed to solve the models.The results show that:Compared with the first-come-firstserved method,in the scenarios of arrival peak&departure off-peak and arrival peak&departure peak,the departure flight equilibrium satisfaction is improved,and the runway occupation time of departure flight flow is reduced by 38.8%.In the scenarios of arrival off-peak&departure off-peak and departure peak&arrival off-peak,the arrival flight equilibrium delay time is significantly reduced,the departure flight equilibrium satisfaction is improved by 77.6%,and the runway occupation time of departure flight flow is reduced by 46.6%.Compared with other four kinds of strategies,the optimal scheduling method can better balance fairness and efficiency,so the scheduling results are more reasonable.
基金mainly supported by the National Natural Science Foundation of China (No. 52175277, 52275293)Resources provided by the Basic Research Program of Shenzhen, China (No. JCYJ 20190806142816524)the Guangdong Basic and Applied Basic Research Foundation, China (No. 2023A1515010774)。
文摘Birds and bats retract and stretch their wings dynamically during each flap in level flights, implying intriguing mechanisms for the aerodynamic performance improvement of flapping wings. A numerical investigation into the aerodynamic effects of such bio-inspired concept in forward flights has been performed based on a three-dimensional wing in plunging motion and a twosection wing in flapping motion. The currently considered Reynolds number and Strouhal number are Re=1.5×10^(5) and St=0.3, respectively. During the research, the mean angle of attack is varied in relatively wide ranges to achieve lift-thrust interconversion for the wings. The conclusive results show that dynamical spanwise retraction and stretch has induced three absolutely desirable scenarios for the oscillating wings in forward flights, namely producing more lift and consuming less power for a given thrust generation, producing more thrust and consuming less power for a given lift generation, and producing more lift and more thrust while consuming less power. Furthermore,the morphing wings have alleviated periodical aerodynamic load fluctuations compared with the non-morphing baseline. The mechanism of the aerodynamic effects of the bionic morphing mode is analyzed with the aid of field visualization. The current article is the first to reveal the absolute advantages of the bionic spanwise morphing. Hopefully, it may help comprehend the behaviors of natural fliers and provide inspirations for performance enhancement of micro artificial flappingwing vehicles.
基金supported by the National Natural Science Foundation of China(62073330)。
文摘Natural events have had a significant impact on overall flight activity,and the aviation industry plays a vital role in helping society cope with the impact of these events.As one of the most impactful weather typhoon seasons appears and continues,airlines operating in threatened areas and passengers having travel plans during this time period will pay close attention to the development of tropical storms.This paper proposes a deep multimodal fusion and multitasking trajectory prediction model that can improve the reliability of typhoon trajectory prediction and reduce the quantity of flight scheduling cancellation.The deep multimodal fusion module is formed by deep fusion of the feature output by multiple submodal fusion modules,and the multitask generation module uses longitude and latitude as two related tasks for simultaneous prediction.With more dependable data accuracy,problems can be analysed rapidly and more efficiently,enabling better decision-making with a proactive versus reactive posture.When multiple modalities coexist,features can be extracted from them simultaneously to supplement each other’s information.An actual case study,the typhoon Lichma that swept China in 2019,has demonstrated that the algorithm can effectively reduce the number of unnecessary flight cancellations compared to existing flight scheduling and assist the new generation of flight scheduling systems under extreme weather.
基金supported by National Natural Science Foundation of China(No.32270554 to CD)。
文摘Animals must strike a balance between anti-predation behavior and other essential behaviors,such as foraging.Within the same species,strategies may vary on individuals’risk-taking preferences,and in this process the environment is a determinant,in addition to predator regime.The Crested Ibis(Nipponia nippon)exhibits such tendency.This is an endangered species,once inhabiting exclusively in China’s Qinling Mountain.This used to be the sole remaining wild population.However,over recent decades,this population has expanded.A portion has relocated to breed in the lower plain area,which is characterized by elevated level of human activities and landscape complexity.We used flight initiation distance(FID)as an indicator of the ibises’risk-taking preference,particularly their response to human proximity.Additionally,we examined the environmental factors influencing their foraging site selection,including altitude,terrain openness,human activity intensity and human construction.Our findings revealed a significantly shorter FID among individuals relocating to plain habitats,indicating a higher tolerance of human proximity.The results showed that FID decreased with distance to the nearest human settlement.Another finding is that FID was independent of instant human activity intensity and environmental factors(altitude and terrain openness).These different may arise from various combinations of human activity,predation risk,and food abundance within the two habitats.These results provide insights into the in situ conservation of the threatened species within the context of global urbanization.
基金project was funded by the Foreign Youth Talent Program of the Ministry of Science and Technology of the People’s Republic of China(QN2023014004L)to Amaël BORZÉEa grant from the Korea Environmental Industry and Technology Institute(KEITI 2021002270001)to Yikweon JANGThe research was carried out whithin the state assignment of Ministry of Science and Higher Education of the Russian Federation(theme No.124012200182-1).
文摘Prey species may have their own optimal escape strategy to balance predation risks and the energetic cost of fleeing.Some species have an advantage when maintaining a short fleeing distance,while others may favour an earlier escape based on microhabitat,size,or body condition.Here,we examined the escape behaviour of the three syntopic Northeast Asian anuran species:Mongolian toads(Strauchbufo raddei),Amur brown frogs(Rana amurensis),and Japanese treefrogs(Dryophytes japonicus)in Mongolia,Russia,China and DPR Korea.We examined flight initiation distance(FID;the distance from a potential predator to the point when the individual starts to flee)and distance fled(DF;distance between flight initiation and flight termination points)of each species and the effects of microhabitat,sex,and body size.Strauchbufo raddei and R.amurensis had a longer FID than D.japonicus,and S.raddei also had a longer DF than D.japonicus.These trends remained similar when dividing FID and DF by a size proxy(snout-vent length)for all individuals.This suggests that the treefrog D.japonicus used a strategy to stay immobile even when they were detected,and the toad S.raddei reacted quicker and more sensitively to predators despite the presence of toxin.Female S.raddei had a significantly longer FID than males suggesting that females are more sensitive to predation risk in this species,but body size was not significant for any of the three species.Our results indicate that the three sympatric species have different escaping strategies,likely related to differences in physiology and crypticity.
文摘In this paper,an intelligent control method applying on numerical virtual flight is proposed.The proposed algorithm is verified and evaluated by combining with the case of the basic finner projectile model and shows a good application prospect.Firstly,a numerical virtual flight simulation model based on overlapping dynamic mesh technology is constructed.In order to verify the accuracy of the dynamic grid technology and the calculation of unsteady flow,a numerical simulation of the basic finner projectile without control is carried out.The simulation results are in good agreement with the experiment data which shows that the algorithm used in this paper can also be used in the design and evaluation of the intelligent controller in the numerical virtual flight simulation.Secondly,combined with the real-time control requirements of aerodynamic,attitude and displacement parameters of the projectile during the flight process,the numerical simulations of the basic finner projectile’s pitch channel are carried out under the traditional PID(Proportional-Integral-Derivative)control strategy and the intelligent PID control strategy respectively.The intelligent PID controller based on BP(Back Propagation)neural network can realize online learning and self-optimization of control parameters according to the acquired real-time flight parameters.Compared with the traditional PID controller,the concerned control variable overshoot,rise time,transition time and steady state error and other performance indicators have been greatly improved,and the higher the learning efficiency or the inertia coefficient,the faster the system,the larger the overshoot,and the smaller the stability error.The intelligent control method applying on numerical virtual flight is capable of solving the complicated unsteady motion and flow with the intelligent PID control strategy and has a strong promotion to engineering application.
文摘In this paper,to study the mechanical responses of a solid propellant subjected to ultrahigh acceleration overload during the gun-launch process,specifically designed projectile flight tests with an onboard measurement system were performed.Two projectiles containing dummy HTPB propellant grains were successfully recovered after the flight tests with an ultrahigh acceleration overload value of 8100 g.The onboard-measured time-resolved axial displacement,contact stress and overload values were successfully obtained and analysed.Uniaxial compression tests of the dummy HTPB propellant used in the gunlaunched tests were carried out at low and intermediate strain rates to characterize the propellant's dynamic properties.A linear viscoelastic constitutive model was employed and applied in finite-element simulations of the projectile-launching process.During the launch process,the dummy propellant grain exhibited large deformation due to the high acceleration overload,possibly leading to friction between the motor case and propellant grain.The calculated contact stress showed good agreement with the experimental results,though discrepancies in the overall displacement of the dummy propellant grain were observed.The dynamic mechanical response process of the dummy propellant grain was analysed in detail.The results can be used to estimate the structural integrity of the analysed dummy propellant grain during the gun-launch process.
基金supported by the National Key Research and Development Program under Grant 2022YFB3303702the Key Program of National Natural Science Foundation of China under Grant 61931001+1 种基金supported by the National Natural Science Foundation of China under Grant No.62203368the Natural Science Foundation of Sichuan Province under Grant No.2023NSFSC1440。
文摘This paper investigates the data collection in an unmanned aerial vehicle(UAV)-aided Internet of Things(IoT) network, where a UAV is dispatched to collect data from ground sensors in a practical and accurate probabilistic line-of-sight(LoS) channel. Especially, access points(APs) are introduced to collect data from some sensors in the unlicensed band to improve data collection efficiency. We formulate a mixed-integer non-convex optimization problem to minimize the UAV flight time by jointly designing the UAV 3D trajectory and sensors’ scheduling, while ensuring the required amount of data can be collected under the limited UAV energy. To solve this nonconvex problem, we recast the objective problem into a tractable form. Then, the problem is further divided into several sub-problems to solve iteratively, and the successive convex approximation(SCA) scheme is applied to solve each non-convex subproblem. Finally,the bisection search is adopted to speed up the searching for the minimum UAV flight time. Simulation results verify that the UAV flight time can be shortened by the proposed method effectively.
基金Project supported by the Zhejiang Provincial Natural Science Foundation (Grant No.LQ20F020011)the Gansu Provincial Foundation for Distinguished Young Scholars (Grant No.23JRRA766)+1 种基金the National Natural Science Foundation of China (Grant No.62162040)the National Key Research and Development Program of China (Grant No.2020YFB1713600)。
文摘The influence maximization problem aims to select a small set of influential nodes, termed a seed set, to maximize their influence coverage in social networks. Although the methods that are based on a greedy strategy can obtain good accuracy, they come at the cost of enormous computational time, and are therefore not applicable to practical scenarios in large-scale networks. In addition, the centrality heuristic algorithms that are based on network topology can be completed in relatively less time. However, they tend to fail to achieve satisfactory results because of drawbacks such as overlapped influence spread. In this work, we propose a discrete two-stage metaheuristic optimization combining quantum-behaved particle swarm optimization with Lévy flight to identify a set of the most influential spreaders. According to the framework,first, the particles in the population are tasked to conduct an exploration in the global solution space to eventually converge to an acceptable solution through the crossover and replacement operations. Second, the Lévy flight mechanism is used to perform a wandering walk on the optimal candidate solution in the population to exploit the potentially unidentified influential nodes in the network. Experiments on six real-world social networks show that the proposed algorithm achieves more satisfactory results when compared to other well-known algorithms.
基金supported by the National Nature Science Foundation of China (62063011,62273169, 61922037, 61873115)Yunnan Fundamental Research Projects(202001AV070001)+1 种基金Yunnan Major Scientific and Technological Projects(202202AG050002)partially supported by the Open Foundation of Key Laboratory in Software Engineering of Yunnan Province (2020SE502)。
文摘The modular system can change its physical structure by self-assembly and self-disassembly between modules to dynamically adapt to task and environmental requirements. Recognizing the adaptive capability of modular systems, we introduce a modular reconfigurable flight array(MRFA) to pursue a multifunction aircraft fitting for diverse tasks and requirements,and investigate the attitude control and the control allocation problem by using the modular reconfigurable flight array as a platform. First, considering the variable and irregular topological configuration of the modular array, a center-of-mass-independent flight array dynamics model is proposed to allow control allocation under over-actuated situations. Secondly, in order to meet the stable, fast and accurate attitude tracking performance of the MRFA, a fixed-time convergent sliding mode controller with state-dependent variable exponent coefficients is proposed to ensure fast convergence rate both away from and near the system equilibrium point without encountering the singularity. It is shown that the controller also has fixed-time convergent characteristics even in the presence of external disturbances. Finally,simulation results are provided to demonstrate the effectiveness of the proposed modeling and control strategies.
基金supported by Major Science and Technology Projects of Yunnan Science and Technology Plan(2019ZG003)Yunnan Young and Middle-aged Academic and Technical Leader Reserve Talent Project(202105AC160068)。
文摘The internal microbial diversity and small molecular metabolites of Nuodeng ham in different processing years(the first,second and third year sample)were analyzed by high-throughput sequencing technology and gas chromatography-time of flight mass spectrography(GC-TOF-MS)to study the effects of microorganisms and small molecular metabolites on the quality of ham in different processing years.The results showed that the dominant bacteria phyla of Nuodeng ham in different processing years were Proteobacteria and Firmicutes,the dominant fungi phyla were Ascomycota and Basidiomycota,while Staphylococcus and Aspergillus were the dominant bacteria and fungi of Nuodeng ham,respectively.Totally,252 kinds of small molecular metabolites were identified from Nuodeng ham in different processing years,and 12 different metabolites were screened through multivariate statistical analysis.Further metabolic pathway analysis showed that 23 metabolic pathways were related to ham fermentation,of which 8 metabolic pathways had significant effects on ham fermentation(Impact>0.01,P<0.05).The content of L-proline,phenyllactic acid,L-lysine,carnosine,taurine,D-proline,betaine and creatine were significantly positively correlated with the relative abundance of Staphylococcus and Serratia,but negatively correlated with the relative abundance of Halomonas,Aspergillus and Yamadazyma.
文摘The design of mini-missiles(MMs)presents several novel challenges.The stringent mission requirement to reach a target with a certain precision imposes a high guidance precision.The miniaturization of the size of MMs makes the design of the guidance,navigation,and control(GNC)have a larger-thanbefore impact on the main-body design(shape,motor,and layout design)and its design objective,i.e.,flight performance.Pursuing a trade-off between flight performance and guidance precision,all the relevant interactions have to be accounted for in the design of the main body and the GNC system.Herein,a multi-objective and multidisciplinary design optimization(MDO)is proposed.Disciplines pertinent to motor,aerodynamics,layout,trajectory,flight dynamics,control,and guidance are included in the proposed MDO framework.The optimization problem seeks to maximize the range and minimize the guidance error.The problem is solved by using the nondominated sorting genetic algorithm II.An optimum design that balances a longer range with a smaller guidance error is obtained.Finally,lessons learned about the design of the MM and insights into the trade-off between flight performance and guidance precision are given by comparing the optimum design to a design provided by the traditional approach.