The global project of the Array for Real-time Geostrophic Oceanography (ARGO) provides a unique opportunity to observe the absolute velocity in mid-depths of the world oceans. A total of 1597 velocity vectors at 10...The global project of the Array for Real-time Geostrophic Oceanography (ARGO) provides a unique opportunity to observe the absolute velocity in mid-depths of the world oceans. A total of 1597 velocity vectors at 1000 (2000) db in the tropical Pacific derived from the ARGO float position information during the period November 2001 to October 2004 are used to evaluate the intermediate currents of the National Centers for Environmental Prediction reanalysis. To derive reliable velocity information from ARGO float trajectory points, a rigorous quality control scheme is applied, and by virtue of a correction method for reducing the drift error on the surface in obtaining the velocity vectors, their relative errors are less than 25%. Based on the comparisons from the quantitative velocity vectors and from the space-time average currents, some substantial discrepancies are revealed. The first is that the velocities of the reanalysis at mid-depths except near the equator are underestimated relative to the observed velocities by the floats. The average speed difference between NCEP and ARGO values ranges from about -2.3cm s^-1 to -1.8 cm s^-1. The second is that the velocity difference between the ocean model and the observations at 2000 dB seems smaller than that at 1000 dB. The third is that the zonal flow in the reanalysis is too dominant so that some eddies could not be simulated, such as the cyclonic eddy to the east of 160°E between 20°N and 30°N at 2000 dB. In addition, it is noticeable that many floats parking at 1000 dB cannot acquire credible mid-depth velocities due to the time information of their end of ascent (start of descent) on the surface in the trajectory files. Thus, relying on default times of parking, descent and ascent in the metadata files gravely confines their application to measuring mid-depth currents.展开更多
As a kind of clean and renewable energy,tidal current energy is becoming increasingly popular all over the world with the shortage of energy and environmental problems becoming more and more severe.A floating tidal cu...As a kind of clean and renewable energy,tidal current energy is becoming increasingly popular all over the world with the shortage of energy and environmental problems becoming more and more severe.A floating tidal current power station is a typical type of tidal current power transformers which can sustain the loads of wind,waves,and current,and even the extreme situation of a typhoon.Therefore,the mooring system must be reliable enough to keep the station operating normally and to survive in extreme situations.The power station examined in this paper was installed at a depth of 40 m.A 44 mm-diameter R4-RQ4 chain was chosen,with a 2 147 kN minimum break strength and 50 kN pretension.Common studless link chain was used in this paper.Based on the Miner fatigue cumulative damage rule,S-N curves of chains,and MOSES software,a highly reliable mooring system was designed and analyzed.The calculation results show that the mooring system designed is reliable throughout a 10-year period.It can completely meet the design requirements of American Petroleum institution(API).Therefore,the presented research is significant for advancing the design of this kind of power station.展开更多
In order to provide a technical reference and guidance for the safety and stability analysis of the submerged floating tunnel (SFT) in the future, the mechanical behaviors of SFT under the action of water current wi...In order to provide a technical reference and guidance for the safety and stability analysis of the submerged floating tunnel (SFT) in the future, the mechanical behaviors of SFT under the action of water current with different velocities were studied by experiments on an SFT tube model made of rubber. Then, a numerical simulation on the coupling interaction between SFT and water current was conducted by finite element method (FEM). The comparison .between the results obtained from experiment and those derived from the numerical simulation shows that the experimental results approximately tally with the simulational ones. As a result, the relationships between water current velocities and the mechanical behaviors of tube, such as the annular and axial strains, internal forces ( axial force and bending moment), and deformations of the tube structure and the forces borne by the tension cables, were concluded.展开更多
In order to further understand the characteristics of the floating potential of low earth orbit spacecraft,the effects of the electron current collection area,background electron temperature,photocurrent emission,spac...In order to further understand the characteristics of the floating potential of low earth orbit spacecraft,the effects of the electron current collection area,background electron temperature,photocurrent emission,spacecraft wake,and the shape of spacecraft on spacecraft floating potential were studied here by particle-in-cell simulation in the low earth orbit.The simulation results show that the electron current collection area and background electron temperature impact on the floating potential by changing the electron current collection of spacecraft.By increasing the electron current collection area or background electron temperature,the spacecraft will float at a lower electric potential with respect to the surrounding plasma.However,the spacecraft wake affects the floating potential by increasing the ion current collected by spacecraft.The emission of the photocurrent from the spacecraft surface,which compensates for the electrons collected from background plasma,causes the floating potential to increase.The shape of the spacecraft is also an important factor influencing the floating potential.展开更多
Since in designing the full adder circuits, full adders have been generally taken into account, so as in this paper it has been attempted to represent a full adder cell with a significant efficiency of power, speed an...Since in designing the full adder circuits, full adders have been generally taken into account, so as in this paper it has been attempted to represent a full adder cell with a significant efficiency of power, speed and leakage current levels. For this objective, a comparison between five full adder circuits has been provided. Applying floating gate technology and refresh circuits in the full adder cell lead to the reduction of leakage current on the gate node. The simulations were accomplished in this paper, through HSPICE software and 65 nm CMOS technology. The simulation results indicate the considerable efficiency of power consumption, speed and leakage current in the full adder cell rather than other cells.展开更多
Multiple regression equations of liquidus temperature, electrical conductivity and bath density of the Na_3AlF_6-AlF_3-BaC1_2-NaCl system were obtained from experiments by using orthogonal regression method. The exper...Multiple regression equations of liquidus temperature, electrical conductivity and bath density of the Na_3AlF_6-AlF_3-BaC1_2-NaCl system were obtained from experiments by using orthogonal regression method. The experiments were carried out in 100A cell with low melting point electrolyte, the influences of cathodic current density, electrolytic temperature, density differences of bath and liquid aluminum on current efficiency (CE) were studied; when the electrolyte cryolite ratio was 2.5, w(BaC1_2) and w(NaCl) were 48% and 10%, respectively, CE reached 90% and specific energy consumption was 10.97k Wb/kg/kg. Because of the fact that aluminum metal obtained floated on the surface of molten electrolyte, this electrolysis method was then defined as low temperature aluminum floating electrolysis. The results showed that the new low temperature aluminum electrolysis process in the Na_3AlF_6-AlF_3-BaC1_2-NaCl bath system was practical and promising.展开更多
The research progress of a novel traffic solution,a submerged floating tunnel(SFT),is reviewed in terms of a study approach and loading scenario.Among existing publications,the buoyancy-weight ratio(BWR) is usuall...The research progress of a novel traffic solution,a submerged floating tunnel(SFT),is reviewed in terms of a study approach and loading scenario.Among existing publications,the buoyancy-weight ratio(BWR) is usually predefined.However,BWR is a critical structural parameter that tremendously affects the dynamic behaviour of not only the tunnel tube itself but also the cable system.In the context of a SFT prototype(SFTP) project in Qiandao Lake(Zhejiang Province,China),the importance of BWR is illustrated by finite element analysis and subsequently,an optimized BWR is proposed within a reasonable range in the present study.In the numerical model,structural damping is identified to be of importance.Rayleigh damping and the corresponding Rayleigh coefficients are attained through a sensitivity study,which shows that the adopted damping ratios are fairly suitable for SFTP.Lastly,the human sense of security is considered by quantifying the comfort index,which helps further optimize BWR in the SFTP structural parameter design.展开更多
A numerical model was used to analyze the motion response and mooring tension of a submerged fish reef system. The system included a net attached to a rigid structure suspended up from the bottom with a single, high t...A numerical model was used to analyze the motion response and mooring tension of a submerged fish reef system. The system included a net attached to a rigid structure suspended up from the bottom with a single, high tension mooring by fixed flotation. The analysis was performed by using a Morison equation type finite element model configured with truss elements. Input forcing parameters into the model consisted of both regular and irregular waves, with and without a steady current. Heave, surge and pitch dynamic calculations of the reef structure were made. Tension response results of the attached mooring line were also computed. Results were analyzed in both the time and frequency domain in which appropriate, linear transfer functions were calculated. The influence of the current was more evident in the tension and heave motion response data. This is most likely the result of the large buoyancy characteristics of the reef structure and the length of the mooting cable. Maximum mooting component tension was found to be 13.9 kN and occurred when the reef was subjected to irregular waves with a co-linear current of 1.0 m/s velocity. The results also showed that the system had little damping (in heave) with damped natural periods of 2.8 s. This combination of system characteristics promotes a possible resonating situation in typical open sea conditions with similar wave periods.展开更多
New voltage-controlled floating inductors employing CFOAs and an analog multiplier have been presented which have the attractive features of using a canonic number of passive components (only two resistors and a capac...New voltage-controlled floating inductors employing CFOAs and an analog multiplier have been presented which have the attractive features of using a canonic number of passive components (only two resistors and a capacitor) and not requiring any component-matching conditions and design constraints for the intended type of inductance realization. The workability and applications of the new circuits have been demonstrated by SPICE simulation and hardware experimental results based upon AD844-type CFOAs and AD633-type/MPY534 type analog multipliers.展开更多
基金This research is supported by Natural Science Foundation of China(Contract No.40437017 and 40225015).
文摘The global project of the Array for Real-time Geostrophic Oceanography (ARGO) provides a unique opportunity to observe the absolute velocity in mid-depths of the world oceans. A total of 1597 velocity vectors at 1000 (2000) db in the tropical Pacific derived from the ARGO float position information during the period November 2001 to October 2004 are used to evaluate the intermediate currents of the National Centers for Environmental Prediction reanalysis. To derive reliable velocity information from ARGO float trajectory points, a rigorous quality control scheme is applied, and by virtue of a correction method for reducing the drift error on the surface in obtaining the velocity vectors, their relative errors are less than 25%. Based on the comparisons from the quantitative velocity vectors and from the space-time average currents, some substantial discrepancies are revealed. The first is that the velocities of the reanalysis at mid-depths except near the equator are underestimated relative to the observed velocities by the floats. The average speed difference between NCEP and ARGO values ranges from about -2.3cm s^-1 to -1.8 cm s^-1. The second is that the velocity difference between the ocean model and the observations at 2000 dB seems smaller than that at 1000 dB. The third is that the zonal flow in the reanalysis is too dominant so that some eddies could not be simulated, such as the cyclonic eddy to the east of 160°E between 20°N and 30°N at 2000 dB. In addition, it is noticeable that many floats parking at 1000 dB cannot acquire credible mid-depth velocities due to the time information of their end of ascent (start of descent) on the surface in the trajectory files. Thus, relying on default times of parking, descent and ascent in the metadata files gravely confines their application to measuring mid-depth currents.
基金Supported by the National "863" Program (Grant No.2007AA05Z450)the National S&T Program (Grant No.2008BAA15B04)+2 种基金2010 Ocean Special Funds (Grant No. ZJME2010GC01, No. ZJME2010CY01)Fundamental Research Funds for the Central Universities (GK2010260106)"111 Project" Foundation (Grant No. B07019) from State Administration of Foreign Experts Affairs of China and Ministry of Education of China
文摘As a kind of clean and renewable energy,tidal current energy is becoming increasingly popular all over the world with the shortage of energy and environmental problems becoming more and more severe.A floating tidal current power station is a typical type of tidal current power transformers which can sustain the loads of wind,waves,and current,and even the extreme situation of a typhoon.Therefore,the mooring system must be reliable enough to keep the station operating normally and to survive in extreme situations.The power station examined in this paper was installed at a depth of 40 m.A 44 mm-diameter R4-RQ4 chain was chosen,with a 2 147 kN minimum break strength and 50 kN pretension.Common studless link chain was used in this paper.Based on the Miner fatigue cumulative damage rule,S-N curves of chains,and MOSES software,a highly reliable mooring system was designed and analyzed.The calculation results show that the mooring system designed is reliable throughout a 10-year period.It can completely meet the design requirements of American Petroleum institution(API).Therefore,the presented research is significant for advancing the design of this kind of power station.
基金The National Natural Science Founda-tion of China (No.10572121)Huo Yingdong Foundationof the China State Ministry of Education (No.94024)
文摘In order to provide a technical reference and guidance for the safety and stability analysis of the submerged floating tunnel (SFT) in the future, the mechanical behaviors of SFT under the action of water current with different velocities were studied by experiments on an SFT tube model made of rubber. Then, a numerical simulation on the coupling interaction between SFT and water current was conducted by finite element method (FEM). The comparison .between the results obtained from experiment and those derived from the numerical simulation shows that the experimental results approximately tally with the simulational ones. As a result, the relationships between water current velocities and the mechanical behaviors of tube, such as the annular and axial strains, internal forces ( axial force and bending moment), and deformations of the tube structure and the forces borne by the tension cables, were concluded.
基金supported by National Natural Science Foundation of China(No.11105063)
文摘In order to further understand the characteristics of the floating potential of low earth orbit spacecraft,the effects of the electron current collection area,background electron temperature,photocurrent emission,spacecraft wake,and the shape of spacecraft on spacecraft floating potential were studied here by particle-in-cell simulation in the low earth orbit.The simulation results show that the electron current collection area and background electron temperature impact on the floating potential by changing the electron current collection of spacecraft.By increasing the electron current collection area or background electron temperature,the spacecraft will float at a lower electric potential with respect to the surrounding plasma.However,the spacecraft wake affects the floating potential by increasing the ion current collected by spacecraft.The emission of the photocurrent from the spacecraft surface,which compensates for the electrons collected from background plasma,causes the floating potential to increase.The shape of the spacecraft is also an important factor influencing the floating potential.
文摘Since in designing the full adder circuits, full adders have been generally taken into account, so as in this paper it has been attempted to represent a full adder cell with a significant efficiency of power, speed and leakage current levels. For this objective, a comparison between five full adder circuits has been provided. Applying floating gate technology and refresh circuits in the full adder cell lead to the reduction of leakage current on the gate node. The simulations were accomplished in this paper, through HSPICE software and 65 nm CMOS technology. The simulation results indicate the considerable efficiency of power consumption, speed and leakage current in the full adder cell rather than other cells.
基金The project was financially supported by the National Natural Science Foundation of China! (Gmnt No.59574018)China Postdocto
文摘Multiple regression equations of liquidus temperature, electrical conductivity and bath density of the Na_3AlF_6-AlF_3-BaC1_2-NaCl system were obtained from experiments by using orthogonal regression method. The experiments were carried out in 100A cell with low melting point electrolyte, the influences of cathodic current density, electrolytic temperature, density differences of bath and liquid aluminum on current efficiency (CE) were studied; when the electrolyte cryolite ratio was 2.5, w(BaC1_2) and w(NaCl) were 48% and 10%, respectively, CE reached 90% and specific energy consumption was 10.97k Wb/kg/kg. Because of the fact that aluminum metal obtained floated on the surface of molten electrolyte, this electrolysis method was then defined as low temperature aluminum floating electrolysis. The results showed that the new low temperature aluminum electrolysis process in the Na_3AlF_6-AlF_3-BaC1_2-NaCl bath system was practical and promising.
文摘The research progress of a novel traffic solution,a submerged floating tunnel(SFT),is reviewed in terms of a study approach and loading scenario.Among existing publications,the buoyancy-weight ratio(BWR) is usually predefined.However,BWR is a critical structural parameter that tremendously affects the dynamic behaviour of not only the tunnel tube itself but also the cable system.In the context of a SFT prototype(SFTP) project in Qiandao Lake(Zhejiang Province,China),the importance of BWR is illustrated by finite element analysis and subsequently,an optimized BWR is proposed within a reasonable range in the present study.In the numerical model,structural damping is identified to be of importance.Rayleigh damping and the corresponding Rayleigh coefficients are attained through a sensitivity study,which shows that the adopted damping ratios are fairly suitable for SFTP.Lastly,the human sense of security is considered by quantifying the comfort index,which helps further optimize BWR in the SFTP structural parameter design.
基金supported by the Korea Research Foundation Grant funded by the Korean Government(MOEHRD)(KRF-2007-313-F00073)Technology Development Program for Food,Agriculture,Forestry and Fisheries,Republic of Korea
文摘A numerical model was used to analyze the motion response and mooring tension of a submerged fish reef system. The system included a net attached to a rigid structure suspended up from the bottom with a single, high tension mooring by fixed flotation. The analysis was performed by using a Morison equation type finite element model configured with truss elements. Input forcing parameters into the model consisted of both regular and irregular waves, with and without a steady current. Heave, surge and pitch dynamic calculations of the reef structure were made. Tension response results of the attached mooring line were also computed. Results were analyzed in both the time and frequency domain in which appropriate, linear transfer functions were calculated. The influence of the current was more evident in the tension and heave motion response data. This is most likely the result of the large buoyancy characteristics of the reef structure and the length of the mooting cable. Maximum mooting component tension was found to be 13.9 kN and occurred when the reef was subjected to irregular waves with a co-linear current of 1.0 m/s velocity. The results also showed that the system had little damping (in heave) with damped natural periods of 2.8 s. This combination of system characteristics promotes a possible resonating situation in typical open sea conditions with similar wave periods.
文摘New voltage-controlled floating inductors employing CFOAs and an analog multiplier have been presented which have the attractive features of using a canonic number of passive components (only two resistors and a capacitor) and not requiring any component-matching conditions and design constraints for the intended type of inductance realization. The workability and applications of the new circuits have been demonstrated by SPICE simulation and hardware experimental results based upon AD844-type CFOAs and AD633-type/MPY534 type analog multipliers.