Distribution control and formation mechanism of gas inclusions formed in directionally solidified Al2O3-Er3Al5O12-ZrO2 eutectic ceramic rods are explored during laser floating zone melting. In atmospheric environment,...Distribution control and formation mechanism of gas inclusions formed in directionally solidified Al2O3-Er3Al5O12-ZrO2 eutectic ceramic rods are explored during laser floating zone melting. In atmospheric environment, highly-dense bubble-free eutectic rods are well fabricated at low solidification rate(<25μm/s). Gas inclusions form intermittently when the solidification rate is in the range of 25-50 μm/s,but produce continuously at higher solidification rates(100-200 μm/s). The gas inclusions exhibit an elongated finger-like pattern along the growth direction, which of the maximum value of diameter first increases and then decreases with increasing the solidification rate. Meanwhile, the volume fraction of gas inclusions increased gradually with the solidification rate. Based on the effect of surface tension gradient, heterogeneous nucleation of gas bubbles is evaluated to be the primary formation mechanism of gas inclusions.展开更多
Phase selection and growth characteristics of directionally solidified Al_(2)O_(3)/GdAlO_3(GAP)faceted eutectic ce ramics are investigated over wide ranges of compositions and solidification rates to explore the eutec...Phase selection and growth characteristics of directionally solidified Al_(2)O_(3)/GdAlO_3(GAP)faceted eutectic ce ramics are investigated over wide ranges of compositions and solidification rates to explore the eutectic coupled zone.Through the obse rvation of the quenched solid-liquid interface,the competitive growth of primary faceted Al_(2)O_(3)phase,prima ry non-faceted GAP phase and Al_(2)O_(3)/GAP eutectic with diffe rent morphologies is detected.Microstructure transitions from wholly eutectic to primary Al_(2)O_(3)(GAP)dendrite plus eutectic and then to wholly eutectic are found in Al_(2)O_(3)-2 O mol%Gd_(2)O_(3)hypoeutectic(Al_(2)O_(3)-26 mol%Gd_(2)O_(3)hypereutectic)ceramics with the increase of solidification rate.The dendrite growth of faceted Al_(2)O_(3)and non-faceted GAP phases are well predicted by KGT model,which have introduced appro p riate dimensionless supersaturationΩto characterize the anisotropic growth of dendrites.Based on the maximum interface temperature criterion,the competitive growth of primary phase and eutectic is analyzed theoretically and the predicted coupled zone of Al_(2)O_(3)/GAP eutectic ceramics is in good agreement with the experimental results.Besides,the influence of microstructure with these different morphologies on the flexural strength of Al_(2)O_(3)/GAP eutectic ceramics is studied.展开更多
Microstructure control is a great challenge in the high-temperature gradient directional solidification of eutectic composite ceramics due to the complex solidification behavior.Herein,the microstructure trans-formati...Microstructure control is a great challenge in the high-temperature gradient directional solidification of eutectic composite ceramics due to the complex solidification behavior.Herein,the microstructure trans-formation of faceted Al_(2)O_(3)/Er_(3)Al_(5)O_(12) thermal emission eutectic composite ceramics is explored over wide ranges of compositions(13.5 mol%-22.5 mol%Er_(2)O_(3))and solidification rates(2-200μm/s).Entirely cou-pled eutectics with primary phases suppressed are fabricated and the coupled zone is broadened in a wide range of 15.5 mol%-22.5 mol%Er_(2)O_(3) at low solidification rates.The competitive growth between eutectic and dendrite is evaluated on the basis of the maximum interface temperature criterion.In ad-dition,the mechanisms of irregular eutectic spacing selection and adjustment under different solidifi-cation rates are revealed based on Magnin-Kurz model.A successful prediction of lamellar to rod-like eutectics is achieved associated with the dynamic instability of lamellar eutectic and the corresponding enlarged coexistence region is mapped based on the interface undercooling.According to the well mi-crostructure tailoring,the flexural strength of Al_(2)O_(3)/Er_(3)Al_(5)O_(12) eutectic composite ceramics has improved from 508 MPa up to 1800 MPa due to the refined eutectic spacing with low fluctuation.The eutectic composite ceramics show strong selective optical absorption and the intensity increases with the refin-ing microstructure.The as-designed Al_(2)O_(3)/Er_(3)Al_(5)O_(12) composites with microstructural tailoring have great potential as integrations of structural and functional materials.展开更多
基金supported financially by the Science, Technology and Innovation Commission of Shenzhen Municipality (No. JCYJ20180306171121424)the National Key R&D Program of China (Nos. 2018YFB1106600 and 2017YFB1103500)+5 种基金the National Natural Science Foundation of China (Nos. 51822405 and 51472200)the Aeronautics Power Foundation (No. 6141B09050337)the Research Fund of Equipment Development Department (No. 61409230402)the Key R&D Program of ShaanXi Province (No. 2018ZDCXL-GY-0904)the Innovation Fund of the Zhejiang Kechuang New Materials Research Institute (No. ZKN-18-P04)the Research Fund of the State Key Laboratory of Solidification Processing (NPU) (No. 2019QZ-02)。
文摘Distribution control and formation mechanism of gas inclusions formed in directionally solidified Al2O3-Er3Al5O12-ZrO2 eutectic ceramic rods are explored during laser floating zone melting. In atmospheric environment, highly-dense bubble-free eutectic rods are well fabricated at low solidification rate(<25μm/s). Gas inclusions form intermittently when the solidification rate is in the range of 25-50 μm/s,but produce continuously at higher solidification rates(100-200 μm/s). The gas inclusions exhibit an elongated finger-like pattern along the growth direction, which of the maximum value of diameter first increases and then decreases with increasing the solidification rate. Meanwhile, the volume fraction of gas inclusions increased gradually with the solidification rate. Based on the effect of surface tension gradient, heterogeneous nucleation of gas bubbles is evaluated to be the primary formation mechanism of gas inclusions.
基金supported financially by the National Natural Science Foundation of China(Nos.51822405 and 51472200)the National Key R&D Program of China(Nos.2017YFB1103500 and2018YFB1106600)+5 种基金the Science,Technology and Innovation Commission of Shenzhen Municipality(No.JCYJ20180306171121424)the Research Fund of Equipment Development Department(No.61409230402)the Aeronautics Power Foundation(No.6141B09050337)the Innovation Fund of the Zhejiang Kechuang New Materials Research Institute(No.ZKN-18-P04)the Key R&D Program of Shaan Xi Province(No.2018ZDCXL-GY-09-04)the Research Fund of the State Key Laboratory of Solidification Processing(NPU)(No.2019-QZ-02)。
文摘Phase selection and growth characteristics of directionally solidified Al_(2)O_(3)/GdAlO_3(GAP)faceted eutectic ce ramics are investigated over wide ranges of compositions and solidification rates to explore the eutectic coupled zone.Through the obse rvation of the quenched solid-liquid interface,the competitive growth of primary faceted Al_(2)O_(3)phase,prima ry non-faceted GAP phase and Al_(2)O_(3)/GAP eutectic with diffe rent morphologies is detected.Microstructure transitions from wholly eutectic to primary Al_(2)O_(3)(GAP)dendrite plus eutectic and then to wholly eutectic are found in Al_(2)O_(3)-2 O mol%Gd_(2)O_(3)hypoeutectic(Al_(2)O_(3)-26 mol%Gd_(2)O_(3)hypereutectic)ceramics with the increase of solidification rate.The dendrite growth of faceted Al_(2)O_(3)and non-faceted GAP phases are well predicted by KGT model,which have introduced appro p riate dimensionless supersaturationΩto characterize the anisotropic growth of dendrites.Based on the maximum interface temperature criterion,the competitive growth of primary phase and eutectic is analyzed theoretically and the predicted coupled zone of Al_(2)O_(3)/GAP eutectic ceramics is in good agreement with the experimental results.Besides,the influence of microstructure with these different morphologies on the flexural strength of Al_(2)O_(3)/GAP eutectic ceramics is studied.
基金supported by the National Natural Science Foundation of China (Nos.52130204,52174376,and 51822405)the Guangdong Basic and Applied Basic Research Foundation (No.2021B1515120028)+2 种基金the Science and Technology Innovation Team Plan of Shaan Xi Province (No.2021TD-17)the Youth Innovation Team of Shaanxi Universities,Fundamental Research Funds for the Central Universities (No.D5000210902)the Innovation Foundation for Doctor Dissertation of Northwestern Polytechnical University (Nos.CX2021056,CX2021066,and CX2022033),China.
文摘Microstructure control is a great challenge in the high-temperature gradient directional solidification of eutectic composite ceramics due to the complex solidification behavior.Herein,the microstructure trans-formation of faceted Al_(2)O_(3)/Er_(3)Al_(5)O_(12) thermal emission eutectic composite ceramics is explored over wide ranges of compositions(13.5 mol%-22.5 mol%Er_(2)O_(3))and solidification rates(2-200μm/s).Entirely cou-pled eutectics with primary phases suppressed are fabricated and the coupled zone is broadened in a wide range of 15.5 mol%-22.5 mol%Er_(2)O_(3) at low solidification rates.The competitive growth between eutectic and dendrite is evaluated on the basis of the maximum interface temperature criterion.In ad-dition,the mechanisms of irregular eutectic spacing selection and adjustment under different solidifi-cation rates are revealed based on Magnin-Kurz model.A successful prediction of lamellar to rod-like eutectics is achieved associated with the dynamic instability of lamellar eutectic and the corresponding enlarged coexistence region is mapped based on the interface undercooling.According to the well mi-crostructure tailoring,the flexural strength of Al_(2)O_(3)/Er_(3)Al_(5)O_(12) eutectic composite ceramics has improved from 508 MPa up to 1800 MPa due to the refined eutectic spacing with low fluctuation.The eutectic composite ceramics show strong selective optical absorption and the intensity increases with the refin-ing microstructure.The as-designed Al_(2)O_(3)/Er_(3)Al_(5)O_(12) composites with microstructural tailoring have great potential as integrations of structural and functional materials.