Two-dimensional(2D)flume experiments are useful in investigating the performances of floating breakwaters(FBs),including hydrodynamic performances,motion responses,and mooring forces.Designing a reasonable gap between...Two-dimensional(2D)flume experiments are useful in investigating the performances of floating breakwaters(FBs),including hydrodynamic performances,motion responses,and mooring forces.Designing a reasonable gap between the flume wall and the FBs is a critical step in 2D flume tests.However,research on the effect of the gap on the accuracy of 2D FB experimental results is scarce.To address this issue,a numerical wave tank is developed using CFD to estimate the wave-FB interaction of a moored dual-cylindrical FB,and the results are compared to experimental data from a previously published work.There is good agreement between them,indicating that the numerical model is sufficiently accurate.The numerical model is then applied to explore the effect of gap diffraction on the performance of FBs in2D experiments.It was discovered that the nondimensional gap length L_(Gap)/W_(Pool)should be smaller than 7.5%to ensure that the relative error of the transmission coefficient is smaller than 3%.The influence of the gap is also related to the entering wave properties,such as the wave height and period.展开更多
The integration of wave energy converters(WECs) with floating breakwaters has become common recently due to the benefits of both cost-sharing and providing offshore power supply. In this study, based on viscous comput...The integration of wave energy converters(WECs) with floating breakwaters has become common recently due to the benefits of both cost-sharing and providing offshore power supply. In this study, based on viscous computational fluid dynamics(CFD) theory, we investigated the hydrodynamic performances of the floating box and Berkeley Wedge breakwaters, both of which can also serve as WECs. A numerical wave flume model is constructed using Star-CCM+software and applied to investigate the interaction between waves and wave energy converters while completing the verification of the convergence study of time and space steps. The effects of wave length on motion response and transmission coefficient of the floating box breakwater model are studied. Comparisons of our numerical results and published experimental data indicate that Star-CCM+ is very capable of accurately modeling the nonlinear wave interaction of floating structures, while the analytical potential theory overrates the results especially around the resonant frequency. Optimal damping can be readily predicted using potential flow theory and can then be verified by CFD numerical results. Next, we investigated the relationship between wave frequencies and various coefficients using the CFD model under optimal damping, including the motion response, transmission coefficient, reflection coefficient,dissipation coefficient, and wave energy conversion efficiency. We then compared the power generation efficiencies and wave dissipation performances of the floating box and Berkeley Wedge breakwaters. The results show that the power generation efficiency of the Berkeley Wedge breakwater is always much higher than that of the floating box breakwater. Besides, the wave dissipation performance of the Berkeley Wedge breakwater is much better than that of the floating box breakwater at lower frequency.展开更多
A floating breakwater(FB)has extensive potential applications in the fields of coastal,offshore,and ocean engineering owing to its advantages such as eco-friendliness,low cost,easy and rapid construction,and quick dis...A floating breakwater(FB)has extensive potential applications in the fields of coastal,offshore,and ocean engineering owing to its advantages such as eco-friendliness,low cost,easy and rapid construction,and quick dismantling and reinstallation.An FB composed of twin pontoons and multi-porous vertical plates is proposed to improve the wave attenuation performance.The wave attenuation performance is investigated for different FB structures and vertical plate types under different incident wave heights and periods using 2D wave physical model tests in a wave flume.The results demonstrate that the proposed FB has a better performance than that of the conventional single pontoon-type FB.It reduces the wave transmission due to its enhanced wave reflection and energy loss.The wave transmission coefficient of the proposed FB decreases with an increase in the number of layers and relative draft depth of the vertical plates.However,a further decrease in the wave transmission coefficient is not observed when the number of porous vertical plates is increased from 4 to 5 layers.An equation has been derived to predict the wave transmission of the proposed FB based on the experimental results.展开更多
In this paper,a novel large caliber machine gun was taken as the research object to analyze the floating technique based on the principle of fixed-point constraint and secondary counter-recoil.A rigid-flexible couplin...In this paper,a novel large caliber machine gun was taken as the research object to analyze the floating technique based on the principle of fixed-point constraint and secondary counter-recoil.A rigid-flexible coupling multi-body dynamic model of the large caliber machine gun with muzzle brake based on floating principle was established,in which the influence of soil and human body was taken into account.The dynamic simulation was conducted and then the results were compared with the corresponding experimental data The dynamic characteristics of the machine gun with or without floating technique were analyzed to indicate the influence of floating technique upon the performance of the gun.Furthermore,the rigid-flexible coupling dynamic models with five different firing angles was constructed to study the influence caused by the angles.The results indicated that the floating mechanism could reduce the recoil effectively and improve the operational performance of this novel large caliber machine gun.展开更多
In this paper, the seismic response of a newly designed steel jacket offshore platform with a float over deck (FOD) system in the Persian Gulf was investigated through incremental dynamic analysis. Comparison of inc...In this paper, the seismic response of a newly designed steel jacket offshore platform with a float over deck (FOD) system in the Persian Gulf was investigated through incremental dynamic analysis. Comparison of incremental dynamic analysis results for both directions of the platform shows that the lateral strength of the platform in the float over direction is less than its lateral strength in other direction. Dynamic characteristics measurement of a scale model of platform was also performed using forced vibration tests. From experimental measurement of the scaled model, it was observed that dynamic characteristic of the platform is different in the float over direction compared to the other direction. Therefore, a new offshore installed bracing system for the float over direction was proposed for improvement of seismic performance of this type of platform. Finally, the structure with the modified system was assessed using the probabilistic seismic assessment method as well as experimental measurement of its dynamic characteristics. It was observed that the proposed offshore installed bracing system improves the performance of platforms subjected to strong ground motion.展开更多
To take advantage of the abundance of both fishery and wave energy resources in offshore sea areas,a novel floating platform with a heaving buoy-based wave energy converter(WEC)assembled with a set of net cages is pre...To take advantage of the abundance of both fishery and wave energy resources in offshore sea areas,a novel floating platform with a heaving buoy-based wave energy converter(WEC)assembled with a set of net cages is presented in this work.The floating WEC system provides a power supply,while the net cages are used for aquaculture.It is designed to have an independent and self-operation breeding function.An experimental study is carried out to investigate the hydrodynamic performance of the device in a wave tank considering the factors of net cages,draft depth,and power take-off,and results show that these variables have significant effects on wave energy capture.Incident waves with short periods cause intense interactions that allow the device to undergo large relative motion.The draft depth could be determined according to wave period rather than wave height.This study also explores the response amplitude operator of the device and determines its resonance scope.The experimental results could provide reliable information for future studies on phase differences and the design of two-body WECs.展开更多
Containment booms are commonly used in collecting and containing spilled oil on the sea surface and in protecting specific sea areas against oil slick spreading.In the present study,a numerical model is proposed based...Containment booms are commonly used in collecting and containing spilled oil on the sea surface and in protecting specific sea areas against oil slick spreading.In the present study,a numerical model is proposed based on the N-S equations in a mesh frame.The proposed model tracks the outline of the floating boom in motion by using the fractional area/volume obstacle representation technique.The boom motion is then simulated by the technique of general moving object.The simulated results of the rigid oil boom motions are validated against the experimental results.Then,the failure mechanism of the boom is investigated through numerical experiments.Based on the numerical results,the effects of boom parameters and dynamic factors on the oil containment performance are also assessed.展开更多
To simulate floating offshore wind turbine(FOWT)in coupled wind-wave domain via CFD method,the NREL 5MW wind turbine supported by the OC3-Hywind Spar platform is modeled in the STAR-CCM+ software.Based on the Reynolds...To simulate floating offshore wind turbine(FOWT)in coupled wind-wave domain via CFD method,the NREL 5MW wind turbine supported by the OC3-Hywind Spar platform is modeled in the STAR-CCM+ software.Based on the Reynolds-averaged Navier-Stokes(RANS)equations and re-normalisation group(RNG)k-εturbulence model,the rotor aerodynamic simulation for wind turbine is conducted.Numerical results agree well with the NREL data.Taking advantage with the volume of fluid(VOF)method and dynamic fluid body interaction(DFBI)technology,the dynamic responses of the floating system with mooring lines are simulated under the coupled wind-wave sea condition.The free-decay tests for rigid-body degrees of freedom(DOFs)in still water and hydrodynamic tests in a regular wave are performed to validate the numerical model by comparing its result with the results simulated by FAST.Finally,the simulations of the overall FOWT system in the coupled wind-wave flow field are carried out.The relationship between the power output and dynamic motion responses of the platform is investigated.The numerical results show that the dynamic response of wind turbine performance and platform motions all vary in the same frequency as the inlet wave.During platform motion,the power output of wind turbine is more sensitive than the thrust force.This study may provide some reference for further research in the coupled aero-hydro simulation of FOWT.展开更多
基金financially supported by China National Funds for Distinguished Young Scientists(Grant No.52025112)the Key Projects of the National Natural Science Foundation of China(Grant No.52331011)。
文摘Two-dimensional(2D)flume experiments are useful in investigating the performances of floating breakwaters(FBs),including hydrodynamic performances,motion responses,and mooring forces.Designing a reasonable gap between the flume wall and the FBs is a critical step in 2D flume tests.However,research on the effect of the gap on the accuracy of 2D FB experimental results is scarce.To address this issue,a numerical wave tank is developed using CFD to estimate the wave-FB interaction of a moored dual-cylindrical FB,and the results are compared to experimental data from a previously published work.There is good agreement between them,indicating that the numerical model is sufficiently accurate.The numerical model is then applied to explore the effect of gap diffraction on the performance of FBs in2D experiments.It was discovered that the nondimensional gap length L_(Gap)/W_(Pool)should be smaller than 7.5%to ensure that the relative error of the transmission coefficient is smaller than 3%.The influence of the gap is also related to the entering wave properties,such as the wave height and period.
基金financially supported by the National Natural Science Foundation of China(51409066,51761135013)High Technology Ship Scientific Research Project from the Ministry of Industry and Information Technology of the People's Republic of China-Floating Security Platform Project(the second stage,201622)the Fundamental Research Fund for the Central University(HEUCF180104,HEUCFP201809)
文摘The integration of wave energy converters(WECs) with floating breakwaters has become common recently due to the benefits of both cost-sharing and providing offshore power supply. In this study, based on viscous computational fluid dynamics(CFD) theory, we investigated the hydrodynamic performances of the floating box and Berkeley Wedge breakwaters, both of which can also serve as WECs. A numerical wave flume model is constructed using Star-CCM+software and applied to investigate the interaction between waves and wave energy converters while completing the verification of the convergence study of time and space steps. The effects of wave length on motion response and transmission coefficient of the floating box breakwater model are studied. Comparisons of our numerical results and published experimental data indicate that Star-CCM+ is very capable of accurately modeling the nonlinear wave interaction of floating structures, while the analytical potential theory overrates the results especially around the resonant frequency. Optimal damping can be readily predicted using potential flow theory and can then be verified by CFD numerical results. Next, we investigated the relationship between wave frequencies and various coefficients using the CFD model under optimal damping, including the motion response, transmission coefficient, reflection coefficient,dissipation coefficient, and wave energy conversion efficiency. We then compared the power generation efficiencies and wave dissipation performances of the floating box and Berkeley Wedge breakwaters. The results show that the power generation efficiency of the Berkeley Wedge breakwater is always much higher than that of the floating box breakwater. Besides, the wave dissipation performance of the Berkeley Wedge breakwater is much better than that of the floating box breakwater at lower frequency.
基金This work was financially supported by the National Key R&D Program of China(Grant No.2017YFC1404200).
文摘A floating breakwater(FB)has extensive potential applications in the fields of coastal,offshore,and ocean engineering owing to its advantages such as eco-friendliness,low cost,easy and rapid construction,and quick dismantling and reinstallation.An FB composed of twin pontoons and multi-porous vertical plates is proposed to improve the wave attenuation performance.The wave attenuation performance is investigated for different FB structures and vertical plate types under different incident wave heights and periods using 2D wave physical model tests in a wave flume.The results demonstrate that the proposed FB has a better performance than that of the conventional single pontoon-type FB.It reduces the wave transmission due to its enhanced wave reflection and energy loss.The wave transmission coefficient of the proposed FB decreases with an increase in the number of layers and relative draft depth of the vertical plates.However,a further decrease in the wave transmission coefficient is not observed when the number of porous vertical plates is increased from 4 to 5 layers.An equation has been derived to predict the wave transmission of the proposed FB based on the experimental results.
基金supported by the National Natural Science Foundation of China under Grant No.11802138China Postdoctoral Science Foundation under Grant No.2018T110503the Fundamental Research Funds for the Central Universities under Grant No.30918011302
文摘In this paper,a novel large caliber machine gun was taken as the research object to analyze the floating technique based on the principle of fixed-point constraint and secondary counter-recoil.A rigid-flexible coupling multi-body dynamic model of the large caliber machine gun with muzzle brake based on floating principle was established,in which the influence of soil and human body was taken into account.The dynamic simulation was conducted and then the results were compared with the corresponding experimental data The dynamic characteristics of the machine gun with or without floating technique were analyzed to indicate the influence of floating technique upon the performance of the gun.Furthermore,the rigid-flexible coupling dynamic models with five different firing angles was constructed to study the influence caused by the angles.The results indicated that the floating mechanism could reduce the recoil effectively and improve the operational performance of this novel large caliber machine gun.
基金sponsored by POGC (Pars Oil and Gas Company,No.132 "Investigation of Structural Health Monitoring of Steel Jacket Offshore Platforms")The financial support of POGC is gratefully acknowledged
文摘In this paper, the seismic response of a newly designed steel jacket offshore platform with a float over deck (FOD) system in the Persian Gulf was investigated through incremental dynamic analysis. Comparison of incremental dynamic analysis results for both directions of the platform shows that the lateral strength of the platform in the float over direction is less than its lateral strength in other direction. Dynamic characteristics measurement of a scale model of platform was also performed using forced vibration tests. From experimental measurement of the scaled model, it was observed that dynamic characteristic of the platform is different in the float over direction compared to the other direction. Therefore, a new offshore installed bracing system for the float over direction was proposed for improvement of seismic performance of this type of platform. Finally, the structure with the modified system was assessed using the probabilistic seismic assessment method as well as experimental measurement of its dynamic characteristics. It was observed that the proposed offshore installed bracing system improves the performance of platforms subjected to strong ground motion.
基金financially supported by the Special Project for Marine Renewable Energy (No. GHME2016YY02)the National Key R&D Program of China (No. 2018YFB 1501900)+1 种基金the Shandong Provincial Natural Science Key Basic Program (No. ZR2017ZA0202)the Qingdao Municipal Science & Technology Program (No. 15-8-3-7jch)
文摘To take advantage of the abundance of both fishery and wave energy resources in offshore sea areas,a novel floating platform with a heaving buoy-based wave energy converter(WEC)assembled with a set of net cages is presented in this work.The floating WEC system provides a power supply,while the net cages are used for aquaculture.It is designed to have an independent and self-operation breeding function.An experimental study is carried out to investigate the hydrodynamic performance of the device in a wave tank considering the factors of net cages,draft depth,and power take-off,and results show that these variables have significant effects on wave energy capture.Incident waves with short periods cause intense interactions that allow the device to undergo large relative motion.The draft depth could be determined according to wave period rather than wave height.This study also explores the response amplitude operator of the device and determines its resonance scope.The experimental results could provide reliable information for future studies on phase differences and the design of two-body WECs.
基金supported by the Foundation for Innovative Research Groups of the National Natural Science Foundation of China(No.51321065)the Program of International S&T Cooperation(No.S2015ZR1030)
文摘Containment booms are commonly used in collecting and containing spilled oil on the sea surface and in protecting specific sea areas against oil slick spreading.In the present study,a numerical model is proposed based on the N-S equations in a mesh frame.The proposed model tracks the outline of the floating boom in motion by using the fractional area/volume obstacle representation technique.The boom motion is then simulated by the technique of general moving object.The simulated results of the rigid oil boom motions are validated against the experimental results.Then,the failure mechanism of the boom is investigated through numerical experiments.Based on the numerical results,the effects of boom parameters and dynamic factors on the oil containment performance are also assessed.
基金supported by the National Basic Research Program of China(″973″Program)(No.2014CB046200)the Specialized Research Fund for the Doctoral Program of Higher Education(No.20120073120014)
文摘To simulate floating offshore wind turbine(FOWT)in coupled wind-wave domain via CFD method,the NREL 5MW wind turbine supported by the OC3-Hywind Spar platform is modeled in the STAR-CCM+ software.Based on the Reynolds-averaged Navier-Stokes(RANS)equations and re-normalisation group(RNG)k-εturbulence model,the rotor aerodynamic simulation for wind turbine is conducted.Numerical results agree well with the NREL data.Taking advantage with the volume of fluid(VOF)method and dynamic fluid body interaction(DFBI)technology,the dynamic responses of the floating system with mooring lines are simulated under the coupled wind-wave sea condition.The free-decay tests for rigid-body degrees of freedom(DOFs)in still water and hydrodynamic tests in a regular wave are performed to validate the numerical model by comparing its result with the results simulated by FAST.Finally,the simulations of the overall FOWT system in the coupled wind-wave flow field are carried out.The relationship between the power output and dynamic motion responses of the platform is investigated.The numerical results show that the dynamic response of wind turbine performance and platform motions all vary in the same frequency as the inlet wave.During platform motion,the power output of wind turbine is more sensitive than the thrust force.This study may provide some reference for further research in the coupled aero-hydro simulation of FOWT.