To avoid grain boundary(GB) precipitation during aging, a new strategy of in situ thermomechanical processing for age hardening alloys was proposed. Specifically, high-density nanoscale precipitates were introduced in...To avoid grain boundary(GB) precipitation during aging, a new strategy of in situ thermomechanical processing for age hardening alloys was proposed. Specifically, high-density nanoscale precipitates were introduced into ultrafine grain(UFG) interiors of 7075 Al alloy by equal-channel-angular(ECAP) processing at 250 ℃ for 8 passes, thus avoiding GB precipitation. Tensile test results indicated that the UFG 7075 Al alloy exhibits superior mechanical properties(yield strength of 350 MPa, ultimate tensile strength of 500 MPa, uniform elongation of 18% and tensile ductility of 19%) compared with the UFG 1050 Al counterpart(yield strength of 170 MPa, ultimate tensile strength of 180 MPa, uniform elongation of 2.5% and tensile ductility of 7%). Fracture surface morphology studies revealed numerous homogeneous micro shear bands in necking shrinkage areas of both UFG 7075 Al and 1050 Al alloys, which are controlled by cooperative GB sliding. Moreover, the introduction of nanoscale precipitates in UFG 7075 Al matrix weakened the tendency of shear fracture, resulting in a higher tensile ductility and more homogeneous deformation. Different from the GB precipitation during postmortem aging, in situ thermomechanical treatment dynamically formed GBs after precipitation, thus avoiding precipitation on GBs.展开更多
High purity ammonium metavanadate(NH_(4)VO_(3))is the most vital chemical to produce V2O5,VO2,VN alloy,VFe alloy and VOSO4,which have some prospective applications for high strength steel,smart window,infrared detecto...High purity ammonium metavanadate(NH_(4)VO_(3))is the most vital chemical to produce V2O5,VO2,VN alloy,VFe alloy and VOSO4,which have some prospective applications for high strength steel,smart window,infrared detector and imaging,large scale energy storage system.NH_(4)VO_(3)is usually produced by spontaneous crystallization from the aqueous solution due to its sharp dependence of solubility on the temperature.However,hazardous chemicals in industrial effluent,include phosphorate,silicate and arsenate,causing severe damage to the environment.In this work,these impurities are selectively precipitated onto inorganic flocculants,while the vanadate dissolved in an aqueous solution keeps almost undisturbed.Therefore,high purity NH_(4)VO_(3)is produced by the crystallization from the purified solution.By screening various flocculants and precipitating parameters,polyaluminum sulfate with an optimal amount of 50 g/L,is demonstrated to selectively remove phosphorate,silicate and arsenate,corresponding to the removing efficiency of 93.39%,97.11%and 88.31%,respectively.NH_(4)VO_(3)from the purified solution holds a purity of 99.21%,in comparison with 98.33%in the product from the crude solution.This purifying technology cannot only produce NH_(4)VO_(3)with high added value,but also reduce the environmental pollution of waste liquid.展开更多
Precipitation strengthening is a crucial microscopic mechanism for enhancing the strength of magnesium alloys. In order to elucidate the influence of precipitation on the microscopic deformation mechanisms and macrosc...Precipitation strengthening is a crucial microscopic mechanism for enhancing the strength of magnesium alloys. In order to elucidate the influence of precipitation on the microscopic deformation mechanisms and macroscopic mechanical response of magnesium alloys under cyclic loading conditions, we employed a crystal plasticity model to analyze the stress-strain curves, specific crystal plane diffraction intensities, and the temporal evolution of various microscopic deformation mechanisms and twinning volume fractions for an extruded magnesium alloy, AXM10304, containing coherent precipitates. The research findings indicate that precipitation does not fundamentally alter the microscopic mechanisms of this alloy. However, it hinders twinning during the compression stage, mildly promotes detwinning during the tension stage, and enhances tension secondary hardening by elevating the difficulty of activation of the prismatic slip.展开更多
In-situ observation of microstructural evolution during heating and soaking process was carded out for a high nickel steel using HTCLSM. Dark phases were observed when soaking at 900℃. Results showed that the number ...In-situ observation of microstructural evolution during heating and soaking process was carded out for a high nickel steel using HTCLSM. Dark phases were observed when soaking at 900℃. Results showed that the number of the dark phases culminated in about 50 s during soaking at 900℃. With the increase of soaking time the area proportion of the dark phases increased and reached the maximum value in about 3 min, When temperature rose from 900 ℃, the dark phases remained steady initially, but started to dissolve into the matrix at about 1 060 ℃ and completely disappeared at 1 132℃. When the specimen soaked at 900 ℃ was cooled down to room temperature (RT), the dark phases kept stable. Energy spectrum analysis results showed that the dark phases contained much more Cr and Mn elements than the matrix and,were also rich in V. Tensile test results showed that the dark phase strengthened the steel with the maximum tensile strength obtained after soaking at 900 ℃ for 3 minutes.展开更多
The basic chemistry laboratories of three colleges and universities in Guizhou Province were investigated completely,especially the pollution situations of the basic chemistry projects were counted,and the discharge a...The basic chemistry laboratories of three colleges and universities in Guizhou Province were investigated completely,especially the pollution situations of the basic chemistry projects were counted,and the discharge amounts of the poisonous and harmful pollutants in the waste liquid from laboratories were monitored and analyzed.On the basis of the summing-up and analysis of the current research findings,a simple and feasible treatment scheme through flocculating,precipitating and constructed wetlands was designed to control the three kinds of excessive pollutants.展开更多
The evolution of precipitates and mechanical properties of AZ80A magnesium alloy with aging time was studied by in situ observation with SEM,TEM and tensile testing.The results show that the continuous precipitation(C...The evolution of precipitates and mechanical properties of AZ80A magnesium alloy with aging time was studied by in situ observation with SEM,TEM and tensile testing.The results show that the continuous precipitation(CP)phases near the reaction front(RF)are replaced by the discontinuous precipitation(DP)phases at the early aging stage.In DP regions,the elliptical phases coarsen obviously with the increase of aging time,which results in a slightly slow reduction of the intracrystalline hardness of DP regions.In CP regions,some small plate phases reprecipitate simultaneously with the growth of the initial precipitates,which contributes to a slight increase in the intracrystalline hardness in CP regions at the later aging stage.The aging hardening of DP regions is faster and stronger than that of CP regions.However,the age strengthening of CP regions not only compensates for the overaging softening of DP regions but also improves the strength of the alloy.展开更多
The effects of alloying elements on the mechanical properties as well as electrical conductivity in Cu-15%Cr(mass fraction) in-situ composites were systematically studied and high strength and high electrical conducti...The effects of alloying elements on the mechanical properties as well as electrical conductivity in Cu-15%Cr(mass fraction) in-situ composites were systematically studied and high strength and high electrical conductive Cu base in-situ composites have been developed. The best combination is the addition of 0.1% to 0.2% Zr, Ti, or Sn in Cu-15%Cr in-situ composite, thermomechanical treatment to refine the microstructure and optimizing the precipitation of second phase. The strength is controlled by high density of dislocations in the Cu matrix, the lamellar spacing of the second phase, and the fine Cr precipitates. The aging treatment to reduce solute atoms has a beneficial effect on the increase of electrical conductivity. The addition of Zr, or Ti of about 0.15% to 0.2% promotes the precipitation of Cr particles.展开更多
The effect of fine precipitates on the initiation and propagation of micro cracks and the length of dislocation free zone (DFZ) in a low alloy Cr Mo V steel was studied by in situ TEM observation for the specimens bot...The effect of fine precipitates on the initiation and propagation of micro cracks and the length of dislocation free zone (DFZ) in a low alloy Cr Mo V steel was studied by in situ TEM observation for the specimens both in embrittled and toughened conditions. The results show that in the embrittled specimen, dislocations emitted from the crack tip can easily slip by cutting through the precipitates and move away from the crack tip region, so that a long DFZ forms and the brittle fracture occurs via cleavage cracks initiating and propagating. The size of DFZ mainly depends upon the diameter and the interparticle distance of the precipitates in the matrix. In the toughened specimens, the size of DFZ extremely changes with the interparticle distance. Mobile dislocations are emitted from the crack tip and bypassing the particles. The interaction between the dislocations and the particles results in the dislocation pile up and tangle, leading to diminishing of the DFZ. The crack tip is easy to blunt or chang the propagating direction and the crack propagation shows a jagged path.展开更多
Hydroxyapatite (HA) was synthesized in situ by the precipitation method, with and without the presence of collagen (COLL), to study its influence on HA’s structural and morphological characteristics. The material was...Hydroxyapatite (HA) was synthesized in situ by the precipitation method, with and without the presence of collagen (COLL), to study its influence on HA’s structural and morphological characteristics. The material was characterized by energy dispersive X-ray spectroscopy (EDX), Fourier transform infrared spectroscopy (FT-IR), wide-angle X-ray diffraction (WAXD), thermogravimetric analysis (TG) and scanning electron microscopy (SEM). The Ca/P molar ratio was influenced by collagen addition—1.89 and 2.38 for samples without and with collagen, respectively. The WAXD pattern revealed better resolution and intensity besides higher crystallinity degree of the HA in the presence of collagen. The photomicrographs showed a strong influence of collagen on the HA morphology.展开更多
Homogeneous chitosan-silk fibroin/hydroxyapatite (CS-SF/HA) composites were prepared by in situ precipitation method driven by a multiple-order template. The morphology of the composites was investigated by scanning...Homogeneous chitosan-silk fibroin/hydroxyapatite (CS-SF/HA) composites were prepared by in situ precipitation method driven by a multiple-order template. The morphology of the composites was investigated by scanning electron microscope (SEM) and transmission electron microscope (TEM). The compositional analysis was carried out by X-ray diffraction analysis (XRD) and Fourier transformed infrared spectroscopy (FTIR). The mechanical properties and biocompatibility of the composites were also determined. The results indicated that the inorganic particles of uniform size (50 nm) were well-dispersed among the CS-SF matrices. The compressive modulus of the CS-SF/HA composites was enhanced with the increasing amount of SF. The in vitro results suggested that the MC3T3-E1 osteoblast-like cells on CS-SF/HA composite disks displayed strong bonding and spreading, and the cell proliferation cultured on each composite disk increased throughout the culture period for up to 7 days. Especially, the samples with higher content of SF had much better biological properties. The evidences proved that the CS-SF/HA composites possessed excellent biocompatibility. By using the freeze-drying technique, hierarchical porous scaffolds with pores ranging from 50 μm to 200 μm were obtained. This work presented the advantages of in situ precipitation method to prepare the organic/inorganic composites, and a multiple-order template was introduced in the system to improve the properties of the composites by combining the merits of each organic template.展开更多
基金the National Key R&D Program of China(No.2017YFA0204403)the National Natural Science Foundation of China(Nos.51971112,51225102)the Fundamental Research Funds for the Central Universities,China(No.30919011405).
文摘To avoid grain boundary(GB) precipitation during aging, a new strategy of in situ thermomechanical processing for age hardening alloys was proposed. Specifically, high-density nanoscale precipitates were introduced into ultrafine grain(UFG) interiors of 7075 Al alloy by equal-channel-angular(ECAP) processing at 250 ℃ for 8 passes, thus avoiding GB precipitation. Tensile test results indicated that the UFG 7075 Al alloy exhibits superior mechanical properties(yield strength of 350 MPa, ultimate tensile strength of 500 MPa, uniform elongation of 18% and tensile ductility of 19%) compared with the UFG 1050 Al counterpart(yield strength of 170 MPa, ultimate tensile strength of 180 MPa, uniform elongation of 2.5% and tensile ductility of 7%). Fracture surface morphology studies revealed numerous homogeneous micro shear bands in necking shrinkage areas of both UFG 7075 Al and 1050 Al alloys, which are controlled by cooperative GB sliding. Moreover, the introduction of nanoscale precipitates in UFG 7075 Al matrix weakened the tendency of shear fracture, resulting in a higher tensile ductility and more homogeneous deformation. Different from the GB precipitation during postmortem aging, in situ thermomechanical treatment dynamically formed GBs after precipitation, thus avoiding precipitation on GBs.
基金support from the Natural Science Foundation of Hubei Province(2020BED011)XPS characterizations and ICP-OES were carried out in the Analytical and Testing Center in HUST.
文摘High purity ammonium metavanadate(NH_(4)VO_(3))is the most vital chemical to produce V2O5,VO2,VN alloy,VFe alloy and VOSO4,which have some prospective applications for high strength steel,smart window,infrared detector and imaging,large scale energy storage system.NH_(4)VO_(3)is usually produced by spontaneous crystallization from the aqueous solution due to its sharp dependence of solubility on the temperature.However,hazardous chemicals in industrial effluent,include phosphorate,silicate and arsenate,causing severe damage to the environment.In this work,these impurities are selectively precipitated onto inorganic flocculants,while the vanadate dissolved in an aqueous solution keeps almost undisturbed.Therefore,high purity NH_(4)VO_(3)is produced by the crystallization from the purified solution.By screening various flocculants and precipitating parameters,polyaluminum sulfate with an optimal amount of 50 g/L,is demonstrated to selectively remove phosphorate,silicate and arsenate,corresponding to the removing efficiency of 93.39%,97.11%and 88.31%,respectively.NH_(4)VO_(3)from the purified solution holds a purity of 99.21%,in comparison with 98.33%in the product from the crude solution.This purifying technology cannot only produce NH_(4)VO_(3)with high added value,but also reduce the environmental pollution of waste liquid.
文摘Precipitation strengthening is a crucial microscopic mechanism for enhancing the strength of magnesium alloys. In order to elucidate the influence of precipitation on the microscopic deformation mechanisms and macroscopic mechanical response of magnesium alloys under cyclic loading conditions, we employed a crystal plasticity model to analyze the stress-strain curves, specific crystal plane diffraction intensities, and the temporal evolution of various microscopic deformation mechanisms and twinning volume fractions for an extruded magnesium alloy, AXM10304, containing coherent precipitates. The research findings indicate that precipitation does not fundamentally alter the microscopic mechanisms of this alloy. However, it hinders twinning during the compression stage, mildly promotes detwinning during the tension stage, and enhances tension secondary hardening by elevating the difficulty of activation of the prismatic slip.
基金Shougang Research Institute of Technology for the financial support to this project
文摘In-situ observation of microstructural evolution during heating and soaking process was carded out for a high nickel steel using HTCLSM. Dark phases were observed when soaking at 900℃. Results showed that the number of the dark phases culminated in about 50 s during soaking at 900℃. With the increase of soaking time the area proportion of the dark phases increased and reached the maximum value in about 3 min, When temperature rose from 900 ℃, the dark phases remained steady initially, but started to dissolve into the matrix at about 1 060 ℃ and completely disappeared at 1 132℃. When the specimen soaked at 900 ℃ was cooled down to room temperature (RT), the dark phases kept stable. Energy spectrum analysis results showed that the dark phases contained much more Cr and Mn elements than the matrix and,were also rich in V. Tensile test results showed that the dark phase strengthened the steel with the maximum tensile strength obtained after soaking at 900 ℃ for 3 minutes.
基金Supported by Natural Science Foundation Projects of Education Department of Guizhou Province (2006319)
文摘The basic chemistry laboratories of three colleges and universities in Guizhou Province were investigated completely,especially the pollution situations of the basic chemistry projects were counted,and the discharge amounts of the poisonous and harmful pollutants in the waste liquid from laboratories were monitored and analyzed.On the basis of the summing-up and analysis of the current research findings,a simple and feasible treatment scheme through flocculating,precipitating and constructed wetlands was designed to control the three kinds of excessive pollutants.
基金financially supported by the Natural Science Foundation of Hunan Province, China (No. 2018JJ2503)the Postgraduate Independent Exploration and Innovation Project of Central South University, China (No. 1053320171111)
文摘The evolution of precipitates and mechanical properties of AZ80A magnesium alloy with aging time was studied by in situ observation with SEM,TEM and tensile testing.The results show that the continuous precipitation(CP)phases near the reaction front(RF)are replaced by the discontinuous precipitation(DP)phases at the early aging stage.In DP regions,the elliptical phases coarsen obviously with the increase of aging time,which results in a slightly slow reduction of the intracrystalline hardness of DP regions.In CP regions,some small plate phases reprecipitate simultaneously with the growth of the initial precipitates,which contributes to a slight increase in the intracrystalline hardness in CP regions at the later aging stage.The aging hardening of DP regions is faster and stronger than that of CP regions.However,the age strengthening of CP regions not only compensates for the overaging softening of DP regions but also improves the strength of the alloy.
文摘The effects of alloying elements on the mechanical properties as well as electrical conductivity in Cu-15%Cr(mass fraction) in-situ composites were systematically studied and high strength and high electrical conductive Cu base in-situ composites have been developed. The best combination is the addition of 0.1% to 0.2% Zr, Ti, or Sn in Cu-15%Cr in-situ composite, thermomechanical treatment to refine the microstructure and optimizing the precipitation of second phase. The strength is controlled by high density of dislocations in the Cu matrix, the lamellar spacing of the second phase, and the fine Cr precipitates. The aging treatment to reduce solute atoms has a beneficial effect on the increase of electrical conductivity. The addition of Zr, or Ti of about 0.15% to 0.2% promotes the precipitation of Cr particles.
文摘The effect of fine precipitates on the initiation and propagation of micro cracks and the length of dislocation free zone (DFZ) in a low alloy Cr Mo V steel was studied by in situ TEM observation for the specimens both in embrittled and toughened conditions. The results show that in the embrittled specimen, dislocations emitted from the crack tip can easily slip by cutting through the precipitates and move away from the crack tip region, so that a long DFZ forms and the brittle fracture occurs via cleavage cracks initiating and propagating. The size of DFZ mainly depends upon the diameter and the interparticle distance of the precipitates in the matrix. In the toughened specimens, the size of DFZ extremely changes with the interparticle distance. Mobile dislocations are emitted from the crack tip and bypassing the particles. The interaction between the dislocations and the particles results in the dislocation pile up and tangle, leading to diminishing of the DFZ. The crack tip is easy to blunt or chang the propagating direction and the crack propagation shows a jagged path.
文摘Hydroxyapatite (HA) was synthesized in situ by the precipitation method, with and without the presence of collagen (COLL), to study its influence on HA’s structural and morphological characteristics. The material was characterized by energy dispersive X-ray spectroscopy (EDX), Fourier transform infrared spectroscopy (FT-IR), wide-angle X-ray diffraction (WAXD), thermogravimetric analysis (TG) and scanning electron microscopy (SEM). The Ca/P molar ratio was influenced by collagen addition—1.89 and 2.38 for samples without and with collagen, respectively. The WAXD pattern revealed better resolution and intensity besides higher crystallinity degree of the HA in the presence of collagen. The photomicrographs showed a strong influence of collagen on the HA morphology.
基金financially supported by the National Natural Science Foundation of China(Nos.31071265 and 30900297)
文摘Homogeneous chitosan-silk fibroin/hydroxyapatite (CS-SF/HA) composites were prepared by in situ precipitation method driven by a multiple-order template. The morphology of the composites was investigated by scanning electron microscope (SEM) and transmission electron microscope (TEM). The compositional analysis was carried out by X-ray diffraction analysis (XRD) and Fourier transformed infrared spectroscopy (FTIR). The mechanical properties and biocompatibility of the composites were also determined. The results indicated that the inorganic particles of uniform size (50 nm) were well-dispersed among the CS-SF matrices. The compressive modulus of the CS-SF/HA composites was enhanced with the increasing amount of SF. The in vitro results suggested that the MC3T3-E1 osteoblast-like cells on CS-SF/HA composite disks displayed strong bonding and spreading, and the cell proliferation cultured on each composite disk increased throughout the culture period for up to 7 days. Especially, the samples with higher content of SF had much better biological properties. The evidences proved that the CS-SF/HA composites possessed excellent biocompatibility. By using the freeze-drying technique, hierarchical porous scaffolds with pores ranging from 50 μm to 200 μm were obtained. This work presented the advantages of in situ precipitation method to prepare the organic/inorganic composites, and a multiple-order template was introduced in the system to improve the properties of the composites by combining the merits of each organic template.