This paper is mainly devoted to the flocking of a class of swarm with fixed topology in a changing environment. Firstly, the controller for each agent is proposed by employing the error terms between the state of the ...This paper is mainly devoted to the flocking of a class of swarm with fixed topology in a changing environment. Firstly, the controller for each agent is proposed by employing the error terms between the state of the agent and the average state of its neighbors. Secondly, a sufficient condition for the swarm to achieve flocking is presented under assumptions that the gradient of the environment is bounded and the initial position graph is connected. Thirdly, as the environment is a plane, it is further proved that the velocity of each agent finally converges to the velocity of the swarm center although not one agent knows where the center of the group is. Finally, numerical examples are included to illustrate the obtained results.展开更多
This study proposes a method for uniformly revolving swarm robots to entrap multiple targets,which is based on a gene regulatory network,an adaptive decision mechanism,and an improved Vicsek-model.Using the gene regul...This study proposes a method for uniformly revolving swarm robots to entrap multiple targets,which is based on a gene regulatory network,an adaptive decision mechanism,and an improved Vicsek-model.Using the gene regulatory network method,the robots can generate entrapping patterns according to the environmental input,including the positions of the targets and obstacles.Next,an adaptive decision mechanism is proposed,allowing each robot to choose the most well-adapted capture point on the pattern,based on its environment.The robots employ an improved Vicsek-model to maneuver to the planned capture point smoothly,without colliding with other robots or obstacles.The proposed decision mechanism,combined with the improved Vicsek-model,can form a uniform entrapment shape and create a revolving effect around targets while entrapping them.This study also enables swarm robots,with an adaptive pattern formation,to entrap multiple targets in complex environments.Swarm robots can be deployed in the military field of unmanned aerial vehicles’(UAVs)entrapping multiple targets.Simulation experiments demonstrate the feasibility and superiority of the proposed gene regulatory network method.展开更多
Based on the data of first motion of 11 earthquake sequences with ML ≥ 3.0 recorded by the Telemetric Seismic Network of Shanxi since the 1980s, the first motion characteristics of each earthquake sequence were studi...Based on the data of first motion of 11 earthquake sequences with ML ≥ 3.0 recorded by the Telemetric Seismic Network of Shanxi since the 1980s, the first motion characteristics of each earthquake sequence were studied. It is known that earthquake sequences of different types have different consistency characteristics of focal mechanism. The decrease and increase of the first motion contradictory sign ratios could be taken as an index to judge whether there would still be a larger earthquake to come after the earthquake sequence.展开更多
During ship operations,frequent heave movements can pose significant challenges to the overall safety of the ship and completion of cargo loading.The existing heave compensation systems suffer from issues such as dead...During ship operations,frequent heave movements can pose significant challenges to the overall safety of the ship and completion of cargo loading.The existing heave compensation systems suffer from issues such as dead zones and control system time lags,which necessitate the development of reasonable prediction models for ship heave movements.In this paper,a novel model based on a time graph convolutional neural network algorithm and particle swarm optimization algorithm(PSO-TGCN)is proposed for the first time to predict the multipoint heave movements of ships under different sea conditions.To enhance the dataset's suitability for training and reduce interference,various filter algorithms are employed to optimize the dataset.The training process utilizes simulated heave data under different sea conditions and measured heave data from multiple points.The results show that the PSO-TGCN model predicts the ship swaying motion in different sea states after 2 s with 84.7%accuracy,while predicting the swaying motion in three different positions.By performing a comparative study,it was also found that the present method achieves better performance that other popular methods.This model can provide technical support for intelligent ship control,improve the control accuracy of intelligent ships,and promote the development of intelligent ships.展开更多
In response to the shortcomings of the Salp Swarm Algorithm (SSA) such as low convergence accuracy and slow convergence speed, a Multi-Strategy-Driven Salp Swarm Algorithm (MSD-SSA) was proposed. First, food sources o...In response to the shortcomings of the Salp Swarm Algorithm (SSA) such as low convergence accuracy and slow convergence speed, a Multi-Strategy-Driven Salp Swarm Algorithm (MSD-SSA) was proposed. First, food sources or random leaders were associated with the current bottle sea squirt at the beginning of the iteration, to which Levy flight random walk and crossover operators with small probability were added to improve the global search and ability to jump out of local optimum. Secondly, the position mean of the leader was used to establish a link with the followers, which effectively avoided the blind following of the followers and greatly improved the convergence speed of the algorithm. Finally, Brownian motion stochastic steps were introduced to improve the convergence accuracy of populations near food sources. The improved method switched under changes in the adaptive parameters, balancing the exploration and development of SSA. In the simulation experiments, the performance of the algorithm was examined using SSA and MSD-SSA on the commonly used CEC benchmark test functions and CEC2017-constrained optimization problems, and the effectiveness of MSD-SSA was verified by solving three real engineering problems. The results showed that MSD-SSA improved the convergence speed and convergence accuracy of the algorithm, and achieved good results in practical engineering problems.展开更多
基金the National Natural Science Foundation of China (No.60374001,60334030)the Doctoral Fund of Ministry of Education of China (No.20030006003)the Commission of Science,Technology and Industry for National Defence (No.A2120061303)
文摘This paper is mainly devoted to the flocking of a class of swarm with fixed topology in a changing environment. Firstly, the controller for each agent is proposed by employing the error terms between the state of the agent and the average state of its neighbors. Secondly, a sufficient condition for the swarm to achieve flocking is presented under assumptions that the gradient of the environment is bounded and the initial position graph is connected. Thirdly, as the environment is a plane, it is further proved that the velocity of each agent finally converges to the velocity of the swarm center although not one agent knows where the center of the group is. Finally, numerical examples are included to illustrate the obtained results.
基金funded by the National Natural Science Foundation of China(62176147)the Science and Technology Planning Project of Guangdong Province of China,the State Key Lab of Digital Manufacturing Equipment and Technology(DMETKF2019020)the National Defense Technology Innovation Special Zone Project(193-A14-226-01-01)。
文摘This study proposes a method for uniformly revolving swarm robots to entrap multiple targets,which is based on a gene regulatory network,an adaptive decision mechanism,and an improved Vicsek-model.Using the gene regulatory network method,the robots can generate entrapping patterns according to the environmental input,including the positions of the targets and obstacles.Next,an adaptive decision mechanism is proposed,allowing each robot to choose the most well-adapted capture point on the pattern,based on its environment.The robots employ an improved Vicsek-model to maneuver to the planned capture point smoothly,without colliding with other robots or obstacles.The proposed decision mechanism,combined with the improved Vicsek-model,can form a uniform entrapment shape and create a revolving effect around targets while entrapping them.This study also enables swarm robots,with an adaptive pattern formation,to entrap multiple targets in complex environments.Swarm robots can be deployed in the military field of unmanned aerial vehicles’(UAVs)entrapping multiple targets.Simulation experiments demonstrate the feasibility and superiority of the proposed gene regulatory network method.
文摘Based on the data of first motion of 11 earthquake sequences with ML ≥ 3.0 recorded by the Telemetric Seismic Network of Shanxi since the 1980s, the first motion characteristics of each earthquake sequence were studied. It is known that earthquake sequences of different types have different consistency characteristics of focal mechanism. The decrease and increase of the first motion contradictory sign ratios could be taken as an index to judge whether there would still be a larger earthquake to come after the earthquake sequence.
基金Acknowledgments: This work was supported by the National Natural Science Foundation of China (Nos. 60774016, 60875039) and the Science Foundation of Education Office of Shandong Province of China (No. J08LJ01).
基金financially supported by the National Key Research and Development Program of China (Grant No.2022YFE010700)the National Natural Science Foundation of China (Grant No.52171259)+1 种基金the High-Tech Ship Research Project of Ministry of Industry and Information Technology (Grant No.[2021]342)Foundation of State Key Laboratory of Ocean Engineering in Shanghai Jiao Tong University (Grant No.GKZD010086-2)。
文摘During ship operations,frequent heave movements can pose significant challenges to the overall safety of the ship and completion of cargo loading.The existing heave compensation systems suffer from issues such as dead zones and control system time lags,which necessitate the development of reasonable prediction models for ship heave movements.In this paper,a novel model based on a time graph convolutional neural network algorithm and particle swarm optimization algorithm(PSO-TGCN)is proposed for the first time to predict the multipoint heave movements of ships under different sea conditions.To enhance the dataset's suitability for training and reduce interference,various filter algorithms are employed to optimize the dataset.The training process utilizes simulated heave data under different sea conditions and measured heave data from multiple points.The results show that the PSO-TGCN model predicts the ship swaying motion in different sea states after 2 s with 84.7%accuracy,while predicting the swaying motion in three different positions.By performing a comparative study,it was also found that the present method achieves better performance that other popular methods.This model can provide technical support for intelligent ship control,improve the control accuracy of intelligent ships,and promote the development of intelligent ships.
文摘In response to the shortcomings of the Salp Swarm Algorithm (SSA) such as low convergence accuracy and slow convergence speed, a Multi-Strategy-Driven Salp Swarm Algorithm (MSD-SSA) was proposed. First, food sources or random leaders were associated with the current bottle sea squirt at the beginning of the iteration, to which Levy flight random walk and crossover operators with small probability were added to improve the global search and ability to jump out of local optimum. Secondly, the position mean of the leader was used to establish a link with the followers, which effectively avoided the blind following of the followers and greatly improved the convergence speed of the algorithm. Finally, Brownian motion stochastic steps were introduced to improve the convergence accuracy of populations near food sources. The improved method switched under changes in the adaptive parameters, balancing the exploration and development of SSA. In the simulation experiments, the performance of the algorithm was examined using SSA and MSD-SSA on the commonly used CEC benchmark test functions and CEC2017-constrained optimization problems, and the effectiveness of MSD-SSA was verified by solving three real engineering problems. The results showed that MSD-SSA improved the convergence speed and convergence accuracy of the algorithm, and achieved good results in practical engineering problems.