期刊文献+
共找到3篇文章
< 1 >
每页显示 20 50 100
Production calculation of the second and tertiary recovery combination reservoirs under chemical flooding
1
作者 LIU Weidong WANG Gaofeng +4 位作者 LIAO Guangzhi WANG Hongzhuang WANG Zhengmao WANG Qiang WANG Zhengbo 《Petroleum Exploration and Development》 CSCD 2021年第6期1403-1410,共8页
Based on the analysis of the production composition of reservoirs developed by the second&tertiary recovery combination(STRC),the relationship between the overall output of the STRC project and the production leve... Based on the analysis of the production composition of reservoirs developed by the second&tertiary recovery combination(STRC),the relationship between the overall output of the STRC project and the production level during the blank water flooding stage is proposed.According to the basic principle of reservoir engineering that the“recovery factor is equal to sweeping coefficient multiplied by oil displacement efficiency”,the formula for calculating the ultimate oil recovery factor of chemical combination flooding reservoir was established.By dividing the reservoir into a series of grids according to differen-tial calculus thinking,the relationship between the ultimate recovery factor of a certain number of grids and the recovery de-gree of the reservoir was established,and then the variation law of oil production rate of the STRC reservoir was obtained.The concept of“oil rate enlargement factor of chemical combination flooding”was defined,and a production calculation method of reservoir developed by STRC was put forward based on practical oilfield development experience.The study shows that the oil production enhancing effect of STRC increases evenly with the in crease of the ratio of STRC displacement efficiency to water displacement efficiency,and increases rapidly with the increase of the ratio of recovery degree at flooding mode conversion to the water displacement efficiency.STRC is more effective in increasing oil production of reservoir with high recovery degree.Through practical tests of the alkali free binary flooding(polymer/surfactant)projects,the relative error of the oil production calculation method of STRC reservoir is about±10%,which meets the requirements of reservoir engineering. 展开更多
关键词 chemical combination flooding second&tertiary recovery combination oil displacement efficiency oil rate en-largement factor of chemical flooding oil production calculation
下载PDF
一种高产液水淹气井组合复产稳产新工艺 被引量:1
2
作者 杨易骏 王锦昌 +4 位作者 周瑞立 周舰 林新宇 陈旭 赵润冬 《石油化工应用》 CAS 2019年第11期15-20,共6页
针对大牛地气田部分高产液水淹气井采用常规复产稳产工艺存在注气压损大、举升压力低、气举时间长、稳产周期短等无法实现经济有效排采的问题,在对比研究泡排、套管充压气举、多井联合气举+环空激动降压等工艺的优缺点基础上,设计一种&q... 针对大牛地气田部分高产液水淹气井采用常规复产稳产工艺存在注气压损大、举升压力低、气举时间长、稳产周期短等无法实现经济有效排采的问题,在对比研究泡排、套管充压气举、多井联合气举+环空激动降压等工艺的优缺点基础上,设计一种"套管充压+多井联合气举+连续泡排"组合复产稳产新工艺,选取1口高产液水淹气井开展了先导试验并进行了经济评价。现场应用表明:高产液水淹气井采用组合复产稳产工艺后,一次性成功复产、成功率为100%、复产周期可缩短28.5%,稳产周期达230 d,复产稳产效果显著。经济评价显示,1口高产液水淹气井复产稳产后日增产量32754 m^3、累计增产量753.346×10^4m^3,累计创效873.88万元,投入产出比为1:100,具有良好的经济效益。该工艺的成功应用为高产液水淹气井的经济有效排采提供了新思路。 展开更多
关键词 高产液 水淹气井 组合复产稳产 应用及评价 大牛地气田
下载PDF
Quantitative analysis of impact of green stormwater infrastructures on combined sewer overflow control and urban flooding control
3
作者 Jinsong Tao Zijian Li +1 位作者 Xinlai Peng Gaoxiang Ying 《Frontiers of Environmental Science & Engineering》 SCIE EI CAS CSCD 2017年第4期93-104,共12页
Stimulated by the recent USEPA's green stormwater infrastructure (GSI) guidance and policies, GS1 systems have been widely implemented in the municipal area to control the combined sewer overflows (CSOs), also kn... Stimulated by the recent USEPA's green stormwater infrastructure (GSI) guidance and policies, GS1 systems have been widely implemented in the municipal area to control the combined sewer overflows (CSOs), also known as low impact development (LID) approaches. To quantitatively evaluate the performance of GSI systems on CSO and urban flooding control, USEPA-Stormwater Management Model (SWMM) model was adopted in this study to simulate the behaviors of GSI systems in a well- developed urban drainage area, PSW45, under different circumstances. The impact of different percentages of stormwater runoff transported from impervious surfaces to the GSI systems on CSO and urban flooding control has also been investigated. Results show that with current buildup, GSI systems in PSW45 have the best performance for low intensity and short duration events on both volume and peak flow reductions, and have the worst pertbrmance tor high intensity and long durataon events. Since the low intensity and short duration events are dominant from a long-term perspective, utilizing GSI systems is considered as an effective measure of CSO control to meet the long-term controlstrategy for PSW45 watershed. However, GSI systems are not suitable for the flooding control purpose in PSW45 due to the high occurrence possibility of urban flooding during or after high intensity events where GSI systems have relatively poor performance no matter for a short or long duration event, 展开更多
关键词 Green stormwater infrastructure (GSI) Combined sewer overflows (CSOs) Urban flooding Low impact development (LID) Stormwater Management Model (SWMM)
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部