In this paper, the Global Satellite Mapping of Precipitation Moving Vector with Kalman filter (GSMaP_MVK) was evaluated and corrected at daily time scales with a spatial resolution of 0.1°;latitude/longitude. The...In this paper, the Global Satellite Mapping of Precipitation Moving Vector with Kalman filter (GSMaP_MVK) was evaluated and corrected at daily time scales with a spatial resolution of 0.1°;latitude/longitude. The reference data came from thirty-four rain gauges on Kyushu Island, Japan. This study focused on the GSMaP_MVK’s ability to detect heavy rainfall patterns that may lead to flooding. Statistical analysis was used to evaluate the GSMaP_MVK data both quantitatively and qualitatively. The statistical analysis included the relative bias (B), the mean error (E), the Nash-Sutcliffe coefficient (CNS), the Root Mean Square Error (RMSE) and the correlation coefficient (r). In addition, Generalized Additive Models (GAMs) were used to conduct GSMaP_MVK data correction. The results of these analyses indicate that GSMaP_MVK data have lower values than observed data and may be significantly underestimated during heavy rainfall. By applying GAM to bias correction, GSMaP_MVK’s ability to detect heavy rainfall was improved. In addition, GAM for bias correction could effectively be applied for significant underestimates of GSMaP_ MVK (i.e., bias of more than 55%). GAM is a new approach to predict rainfall amount for flood and landslide monitoring of satellite base precipitation, especially in areas where rain gauge data are limited.展开更多
Taking Dongting Lake district as the studying area and utilizing multi-temporal MOS-lb/MESSR data as remote sensing info source, by the combination operation and ratio transform processing and the image, spectrum and ...Taking Dongting Lake district as the studying area and utilizing multi-temporal MOS-lb/MESSR data as remote sensing info source, by the combination operation and ratio transform processing and the image, spectrum and histogram comparison of the MESSR image data of all bands for the flood season and dry season with the ER-DAS IMAGINE system, a classification model was established, which can be used to acquire the spatial distributing information of water bodies. Meanwhile a water depth index model was derived and built, and then a model for detecting the depth of water body based on the non-linear recursive analysis was presented. By the overlay analysis of the classification thematic images based on the model for extracting flood information, the flooding area and distributing information were acquired.展开更多
In order to assess the flood damage rapidly and accurately,this paper proposed a practical method of flood disaster monitoring based on meso-scale automatic weather stations rainfall data and 1:5 million high-precisio...In order to assess the flood damage rapidly and accurately,this paper proposed a practical method of flood disaster monitoring based on meso-scale automatic weather stations rainfall data and 1:5 million high-precision DEM (digital elevation model) data.It can predict roughly areas by the automatic weather station rainfall analysis and processing when the floods happen.Using partitions 'horizontal' approximation methods,the model of DEM flooding disaster's monitoring has been constructed based on 1:5 million high-precision DEM.And the technical methods applied to the analysis of experimental area.The result of flood disaster's monitoring is carried on comparison and the analysis through the verification by CBERS-02B.It finds that the area of floods is very consistent by the model of DEM and CBERS-02B flooding disaster's monitoring.So the method of flood disaster's motoring based on DEM can be real-time,dynamic,and can monitor the flood zone accurately and effectively.It also can provide the decision making department with present and assisting scheme of policy making.展开更多
Level set method has been extensively used for image segmentation,which is a key technology of water extraction.However,one of the problems of the level-set method is how to find the appropriate initial surface parame...Level set method has been extensively used for image segmentation,which is a key technology of water extraction.However,one of the problems of the level-set method is how to find the appropriate initial surface parameters,which will affect the accuracy and speed of level set evolution.Recently,the semantic segmentation based on deep learning has opened the exciting research possibilities.In addition,the Convolutional Neural Network(CNN)has shown a strong feature representation capability.Therefore,in this paper,the CNN method is used to obtain the initial SAR image segmentation map to provide deep a priori information for the zero-level set curve,which only needs to describe the general outline of the water body,rather than the accurate edges.Compared with the traditional circular and rectangular zero-level set initialization method,this method can converge to the edge of the water body faster and more precisely;it will not fall into the local minimum value and be able to obtain accurate segmentation results.The effectiveness of the proposed method is demonstrated by the experimental results of flood disaster monitoring in South China in 2020.展开更多
Summer floods occur frequently in many regions of China,affecting economic development and social stability.Remote sensing is a new technique in disaster monitoring.In this study,the Sihu Basin in Hubei Province of Ch...Summer floods occur frequently in many regions of China,affecting economic development and social stability.Remote sensing is a new technique in disaster monitoring.In this study,the Sihu Basin in Hubei Province of China and the Huaibei Plain in Anhui Province of China were selected as the study areas.Thresholds of backscattering coefficients in the decision tree method were calculated with the histogram analysis method,and flood disaster monitoring in the two study areas was conducted with the threshold method using Sentinel-1 satellite images.Through satellite-based flood disaster monitoring,the flooded maps and the areas of expanded water bodies and flooded crops were derived.The satellite-based monitoring maps were derived by comparing the expanded area of images during a flood disaster with that before the disaster.The difference in spatiotemporal distribution of flood disasters in these two regions was analyzed.The results showed that flood disasters in the Sihu Basin occurred frequently in June and July,and flood disasters in the Huaibei Plain mostly occurred in August,with a high interannual vari-ability.Flood disasters in the Sihu Basin were usually widespread,and the affected area was between Changhu and Honghu lakes.The Huaibei Plain was affected by scattered disasters.The annual mean percentages of flooded crop area were 14.91%and 3.74% in the Sihu Basin and Huaibei Plain,respectively.The accuracies of the extracted flooded area in the Sihu Basin in 2016 and 2017 were 96.20% and 95.19%,respectively.展开更多
The study identified spatial variations in flood vulnerability levels in Port Harcourt metropolis with the use of GIS (geographic information systems). This study considered four factors and these included landuse t...The study identified spatial variations in flood vulnerability levels in Port Harcourt metropolis with the use of GIS (geographic information systems). This study considered four factors and these included landuse types, drainage, residential densities and elevation. The elevation data and drainage data were derived from the topographical map of scale 1:35,000, while the land use types were derived from the imagery of Port Harcourt metropolis downloaded from Google Earth, 2010 version. Both the topographical map and imagery were geo-referenced to geographic coordinates and geographic features were digitized in form of shapefiles using both ArcView GIS 3.3 and ArcGIS 9.2 versions. AHP (analytical hierarchical process) was adopted in this study whereby many flood factors were ranked and overlaid for decision making. The contour data was used to generate the DEM (digital elevation model) through the process called kriging in ArcGIS 9.2. Based on the ranking index, factors considered were reclassified to three levels of vulnerability namely highly vulnerable, moderately vulnerable and lowly vulnerable through ranking method and these reclassified factors were then overlaid using an addition operator. The analysis shows that communities like Eagle Island, Ojimbo, Kidney Island were highly vulnerable to flood while communities like Choba, Ogbogoro, Rumualogu were moderately vulnerable. Communities like Rumuigbo, Rumuodomaya etc. were lowly vulnerable to flood. The highly vulnerable places covered 98.18 km2, moderately vulnerable was 220.46 km2 and lowly vulnerable areas covered 330.77 km2.展开更多
The Center for Hydrometeorology and Remote Sensing at the University of California, Irvine (CHRS) has been collaborating with UNESCO's International Hydrological Program (IHP) to build a facility for forecasting ...The Center for Hydrometeorology and Remote Sensing at the University of California, Irvine (CHRS) has been collaborating with UNESCO's International Hydrological Program (IHP) to build a facility for forecasting and mitigating hydrological disasters. This collaboration has resulted in the development of the Water and Development Information for Arid Lands-- a Global Network (G-WADI) PERSIANN-CCS GeoServer, a near real-time global precipitation visualization and data service. This GeoServer pro- vides to end-users the tools and precipitation data needed to support operational decision making, research and sound water man- agement. This manuscript introduces and demonstrates the practicality of the G-WADI PERSIANN-CCS GeoServer for monitor- ing extreme precipitation events even over regions where ground measurements are sparse. Two extreme events are analyzed. The first event shows an extreme precipitation event causing widespread flooding in Beijing, China and surrotmding districts on July 21, 2012. The second event shows tropical storm Nock-Ten that occurred in late July of 2011 causing widespread flooding in Thailand. Evaluation of PERSIANN-CCS precipitation over Thailand using a rain gauge network is also conducted and discussed.展开更多
Against the background of rapid climate warming,frequent and severe flooding disasters significantly impact socio-economic development and human life.In 2023,due to the northward movement of Typhoon Doksuri,extreme pr...Against the background of rapid climate warming,frequent and severe flooding disasters significantly impact socio-economic development and human life.In 2023,due to the northward movement of Typhoon Doksuri,extreme precipitation occurred in northern China,which resulted in a massive flood event in the Haihe River basin.Seven flood detention basins(FDBs)in North China were successfully implemented to effectively alleviate the downstream flood pressure.Leveraging all available Chinese satellite data,we monitored the flooding process daily,focusing on reviewing the flooding in the Dongdian FDB.The results indicate that since the activation of Dongdian FDB on August 1,the flood reached the urban area of Tianjin in just nine days and inundated the entire detention basin.Flooding persisted in the detention basin for about a week before gradually receding.The total maximum inundated area in the whole region was 307.5 km^(2),including 240.5 km^(2)of arable land,7.0 km^(2)of greenhouse land,and 9.7 km^(2)of built-up land,with an average inundation duration of 19 days.The total cumulative inundated arable land area was 240.5 km^(2),with an average inundation time of 21 days.This study shows that multi-source Chinese satellite data can provide comprehensive information and adequate references for post-disaster assessments.展开更多
Single-sensor monitoring of flood events at high spatial and temporal resolutions is difficult because of the lack of data owing to instrument defects,cloud contamination,imaging geometry.However,combining multisensor...Single-sensor monitoring of flood events at high spatial and temporal resolutions is difficult because of the lack of data owing to instrument defects,cloud contamination,imaging geometry.However,combining multisensor data provides an impressive solution to this problem.In this study,11 synthetic aperture radar(SAR)images and 13 optical images were collected from the Google Earth Engine(GEE)platform during the Sardoba Reservoir flood event to constitute a time series dataset.Threshold-based and indices-based methods were used for SAR and optical data,respectively,to extract the water extent.The final sequential flood water maps were obtained by fusing the results from multisensor time series imagery.Experiments show that,when compare with the Global Surface Water Dynamic(GSWD)dataset,the overall accuracy and Kappa coefficient of the water body extent extracted by our methods range from 98.8%to 99.1%and 0.839 to 0.900,respectively.The flooded extent and area increased sharply to a maximum between May 1 and May 4,and then experienced a sustained decline over time.The flood lasted for more than a month in the lowland areas in the north,indicating that the northern region is severely affected.Land cover changes could be detected using the temporal spectrum analysis,which indicated that detailed temporal information benefiting from the multisensor data is highly important for time series analyses.展开更多
Fengyun-4 A(FY-4 A) belongs to the second generation of geostationary meteorological satellite series in China. Its observations with high frequency and resolution provide a better data basis for monitoring of extreme...Fengyun-4 A(FY-4 A) belongs to the second generation of geostationary meteorological satellite series in China. Its observations with high frequency and resolution provide a better data basis for monitoring of extreme weather such as sudden flood disasters. In this study, the flood disasters occurred in Bangladesh, India, and some other areas of South Asia in August 2018 were investigated by using a rapid multi-temporal synthesis approach for the first time for removal of thick clouds in FY-4 A images. The maximum between-class variance algorithm(OTSU;developed by Otsu in 2007) and linear spectral unmixing methods are used to extract the water area of flood disasters. The accuracy verification shows that the water area of flood disasters extracted from FY-4 A is highly correlated with that from the high-resolution satellite datasets Gaofen-1(GF-1) and Sentinel-1 A, with the square correlation coefficient R2 reaching 0.9966. The average extraction accuracy of FY-4 A is over 90%. With the rapid multi-temporal synthesis approach used in flood disaster monitoring with FY-4 A satellite data, advantages of the wide coverage, fast acquisition,and strong timeliness with geostationary meteorological satellites are effectively combined. Through the synthesis of multi-temporal images of the flood water body, the influence of clouds is effectively eliminated, which is of great significance for the real-time flood monitoring. This also provides an important service guarantee for the disaster prevention and reduction as well as economic and social development in China and the Asia-Pacific region.展开更多
文摘In this paper, the Global Satellite Mapping of Precipitation Moving Vector with Kalman filter (GSMaP_MVK) was evaluated and corrected at daily time scales with a spatial resolution of 0.1°;latitude/longitude. The reference data came from thirty-four rain gauges on Kyushu Island, Japan. This study focused on the GSMaP_MVK’s ability to detect heavy rainfall patterns that may lead to flooding. Statistical analysis was used to evaluate the GSMaP_MVK data both quantitatively and qualitatively. The statistical analysis included the relative bias (B), the mean error (E), the Nash-Sutcliffe coefficient (CNS), the Root Mean Square Error (RMSE) and the correlation coefficient (r). In addition, Generalized Additive Models (GAMs) were used to conduct GSMaP_MVK data correction. The results of these analyses indicate that GSMaP_MVK data have lower values than observed data and may be significantly underestimated during heavy rainfall. By applying GAM to bias correction, GSMaP_MVK’s ability to detect heavy rainfall was improved. In addition, GAM for bias correction could effectively be applied for significant underestimates of GSMaP_ MVK (i.e., bias of more than 55%). GAM is a new approach to predict rainfall amount for flood and landslide monitoring of satellite base precipitation, especially in areas where rain gauge data are limited.
文摘Taking Dongting Lake district as the studying area and utilizing multi-temporal MOS-lb/MESSR data as remote sensing info source, by the combination operation and ratio transform processing and the image, spectrum and histogram comparison of the MESSR image data of all bands for the flood season and dry season with the ER-DAS IMAGINE system, a classification model was established, which can be used to acquire the spatial distributing information of water bodies. Meanwhile a water depth index model was derived and built, and then a model for detecting the depth of water body based on the non-linear recursive analysis was presented. By the overlay analysis of the classification thematic images based on the model for extracting flood information, the flooding area and distributing information were acquired.
基金Supported by the Grant of Guangxi Academy of Technique Development and Research Program (GUIKEGONG0719005-3GUIKEGONG0816006-8)
文摘In order to assess the flood damage rapidly and accurately,this paper proposed a practical method of flood disaster monitoring based on meso-scale automatic weather stations rainfall data and 1:5 million high-precision DEM (digital elevation model) data.It can predict roughly areas by the automatic weather station rainfall analysis and processing when the floods happen.Using partitions 'horizontal' approximation methods,the model of DEM flooding disaster's monitoring has been constructed based on 1:5 million high-precision DEM.And the technical methods applied to the analysis of experimental area.The result of flood disaster's monitoring is carried on comparison and the analysis through the verification by CBERS-02B.It finds that the area of floods is very consistent by the model of DEM and CBERS-02B flooding disaster's monitoring.So the method of flood disaster's motoring based on DEM can be real-time,dynamic,and can monitor the flood zone accurately and effectively.It also can provide the decision making department with present and assisting scheme of policy making.
基金supported by the National Natural Science Foundation of China[grant numbers 41771457 and 41601443]the Research Program of the Department of Natural Resources of Hubei Province of China[grant number ZRZY2020KJ03].
文摘Level set method has been extensively used for image segmentation,which is a key technology of water extraction.However,one of the problems of the level-set method is how to find the appropriate initial surface parameters,which will affect the accuracy and speed of level set evolution.Recently,the semantic segmentation based on deep learning has opened the exciting research possibilities.In addition,the Convolutional Neural Network(CNN)has shown a strong feature representation capability.Therefore,in this paper,the CNN method is used to obtain the initial SAR image segmentation map to provide deep a priori information for the zero-level set curve,which only needs to describe the general outline of the water body,rather than the accurate edges.Compared with the traditional circular and rectangular zero-level set initialization method,this method can converge to the edge of the water body faster and more precisely;it will not fall into the local minimum value and be able to obtain accurate segmentation results.The effectiveness of the proposed method is demonstrated by the experimental results of flood disaster monitoring in South China in 2020.
基金This work was supported by the National Key Research and Development Program of China(Grants No.2018YFC1508302 and 2018YFC1508301)the Natural Science Foundation of Hubei Province of China(Grant No.2019CFB507).
文摘Summer floods occur frequently in many regions of China,affecting economic development and social stability.Remote sensing is a new technique in disaster monitoring.In this study,the Sihu Basin in Hubei Province of China and the Huaibei Plain in Anhui Province of China were selected as the study areas.Thresholds of backscattering coefficients in the decision tree method were calculated with the histogram analysis method,and flood disaster monitoring in the two study areas was conducted with the threshold method using Sentinel-1 satellite images.Through satellite-based flood disaster monitoring,the flooded maps and the areas of expanded water bodies and flooded crops were derived.The satellite-based monitoring maps were derived by comparing the expanded area of images during a flood disaster with that before the disaster.The difference in spatiotemporal distribution of flood disasters in these two regions was analyzed.The results showed that flood disasters in the Sihu Basin occurred frequently in June and July,and flood disasters in the Huaibei Plain mostly occurred in August,with a high interannual vari-ability.Flood disasters in the Sihu Basin were usually widespread,and the affected area was between Changhu and Honghu lakes.The Huaibei Plain was affected by scattered disasters.The annual mean percentages of flooded crop area were 14.91%and 3.74% in the Sihu Basin and Huaibei Plain,respectively.The accuracies of the extracted flooded area in the Sihu Basin in 2016 and 2017 were 96.20% and 95.19%,respectively.
文摘The study identified spatial variations in flood vulnerability levels in Port Harcourt metropolis with the use of GIS (geographic information systems). This study considered four factors and these included landuse types, drainage, residential densities and elevation. The elevation data and drainage data were derived from the topographical map of scale 1:35,000, while the land use types were derived from the imagery of Port Harcourt metropolis downloaded from Google Earth, 2010 version. Both the topographical map and imagery were geo-referenced to geographic coordinates and geographic features were digitized in form of shapefiles using both ArcView GIS 3.3 and ArcGIS 9.2 versions. AHP (analytical hierarchical process) was adopted in this study whereby many flood factors were ranked and overlaid for decision making. The contour data was used to generate the DEM (digital elevation model) through the process called kriging in ArcGIS 9.2. Based on the ranking index, factors considered were reclassified to three levels of vulnerability namely highly vulnerable, moderately vulnerable and lowly vulnerable through ranking method and these reclassified factors were then overlaid using an addition operator. The analysis shows that communities like Eagle Island, Ojimbo, Kidney Island were highly vulnerable to flood while communities like Choba, Ogbogoro, Rumualogu were moderately vulnerable. Communities like Rumuigbo, Rumuodomaya etc. were lowly vulnerable to flood. The highly vulnerable places covered 98.18 km2, moderately vulnerable was 220.46 km2 and lowly vulnerable areas covered 330.77 km2.
基金Partial financial support was provided by the NASA-PMM (Grant No. NNX10AK07G)the US Army Research Office project (Grant No. W911NF-11-1-0422)
文摘The Center for Hydrometeorology and Remote Sensing at the University of California, Irvine (CHRS) has been collaborating with UNESCO's International Hydrological Program (IHP) to build a facility for forecasting and mitigating hydrological disasters. This collaboration has resulted in the development of the Water and Development Information for Arid Lands-- a Global Network (G-WADI) PERSIANN-CCS GeoServer, a near real-time global precipitation visualization and data service. This GeoServer pro- vides to end-users the tools and precipitation data needed to support operational decision making, research and sound water man- agement. This manuscript introduces and demonstrates the practicality of the G-WADI PERSIANN-CCS GeoServer for monitor- ing extreme precipitation events even over regions where ground measurements are sparse. Two extreme events are analyzed. The first event shows an extreme precipitation event causing widespread flooding in Beijing, China and surrotmding districts on July 21, 2012. The second event shows tropical storm Nock-Ten that occurred in late July of 2011 causing widespread flooding in Thailand. Evaluation of PERSIANN-CCS precipitation over Thailand using a rain gauge network is also conducted and discussed.
基金The Research and Development Program of China(2021YFB3901205)。
文摘Against the background of rapid climate warming,frequent and severe flooding disasters significantly impact socio-economic development and human life.In 2023,due to the northward movement of Typhoon Doksuri,extreme precipitation occurred in northern China,which resulted in a massive flood event in the Haihe River basin.Seven flood detention basins(FDBs)in North China were successfully implemented to effectively alleviate the downstream flood pressure.Leveraging all available Chinese satellite data,we monitored the flooding process daily,focusing on reviewing the flooding in the Dongdian FDB.The results indicate that since the activation of Dongdian FDB on August 1,the flood reached the urban area of Tianjin in just nine days and inundated the entire detention basin.Flooding persisted in the detention basin for about a week before gradually receding.The total maximum inundated area in the whole region was 307.5 km^(2),including 240.5 km^(2)of arable land,7.0 km^(2)of greenhouse land,and 9.7 km^(2)of built-up land,with an average inundation duration of 19 days.The total cumulative inundated arable land area was 240.5 km^(2),with an average inundation time of 21 days.This study shows that multi-source Chinese satellite data can provide comprehensive information and adequate references for post-disaster assessments.
基金funded by the National Natural Science Foundation of China(Nos.41474010,61401509)。
文摘Single-sensor monitoring of flood events at high spatial and temporal resolutions is difficult because of the lack of data owing to instrument defects,cloud contamination,imaging geometry.However,combining multisensor data provides an impressive solution to this problem.In this study,11 synthetic aperture radar(SAR)images and 13 optical images were collected from the Google Earth Engine(GEE)platform during the Sardoba Reservoir flood event to constitute a time series dataset.Threshold-based and indices-based methods were used for SAR and optical data,respectively,to extract the water extent.The final sequential flood water maps were obtained by fusing the results from multisensor time series imagery.Experiments show that,when compare with the Global Surface Water Dynamic(GSWD)dataset,the overall accuracy and Kappa coefficient of the water body extent extracted by our methods range from 98.8%to 99.1%and 0.839 to 0.900,respectively.The flooded extent and area increased sharply to a maximum between May 1 and May 4,and then experienced a sustained decline over time.The flood lasted for more than a month in the lowland areas in the north,indicating that the northern region is severely affected.Land cover changes could be detected using the temporal spectrum analysis,which indicated that detailed temporal information benefiting from the multisensor data is highly important for time series analyses.
基金Supported by the National Key Research and Development Program of China(2018YFC1506500)。
文摘Fengyun-4 A(FY-4 A) belongs to the second generation of geostationary meteorological satellite series in China. Its observations with high frequency and resolution provide a better data basis for monitoring of extreme weather such as sudden flood disasters. In this study, the flood disasters occurred in Bangladesh, India, and some other areas of South Asia in August 2018 were investigated by using a rapid multi-temporal synthesis approach for the first time for removal of thick clouds in FY-4 A images. The maximum between-class variance algorithm(OTSU;developed by Otsu in 2007) and linear spectral unmixing methods are used to extract the water area of flood disasters. The accuracy verification shows that the water area of flood disasters extracted from FY-4 A is highly correlated with that from the high-resolution satellite datasets Gaofen-1(GF-1) and Sentinel-1 A, with the square correlation coefficient R2 reaching 0.9966. The average extraction accuracy of FY-4 A is over 90%. With the rapid multi-temporal synthesis approach used in flood disaster monitoring with FY-4 A satellite data, advantages of the wide coverage, fast acquisition,and strong timeliness with geostationary meteorological satellites are effectively combined. Through the synthesis of multi-temporal images of the flood water body, the influence of clouds is effectively eliminated, which is of great significance for the real-time flood monitoring. This also provides an important service guarantee for the disaster prevention and reduction as well as economic and social development in China and the Asia-Pacific region.