An exhaustive knowledge of flood risk in different spatial locations is essential for developing an effective flood mitigation strategy for a watershed. In the present study, a riskvulnerability analysis to flood is p...An exhaustive knowledge of flood risk in different spatial locations is essential for developing an effective flood mitigation strategy for a watershed. In the present study, a riskvulnerability analysis to flood is performed. Four components of vulnerability to flood: 1) physical, 2) economic, 3) infrastructure and 4) social;are evaluated individually using a Geographic Information System (GIS) environment. The proposed methodology estimates the impact on infrastructure vulnerability due to inundation of critical facilities, emer gency service stations and bridges. The components of vulnerability are combined to determine an overall vulnerability to flood. The exposures of land use/land cover and soil type (permeability) to flood are also considered to include their effects on severity of flood. The values of probability of occurrence of flood, vulnerability to flood, and exposures of land use and soil type to flood are used to finally compute flood risk at different locations in a watershed. The proposed methodology is implemented for six major damage centers in the Upper Thames River watershed, located in the SouthWestern Ontario, Canada to assess the flood risk. An information system is developed for systematic presentation of the flood risk, probability of occurrence of flood, vulnerability to flood, and exposures of land use and soil type to flood by postal code regions or Forward Sortation Areas (FSAs). The flood information system is designed to provide support for different users, i.e., general public, decisionmakers and water management professionals. An interactive analysis tool is developed within the information system to assist in evaluation of the flood risk in response to a change in land use pattern.展开更多
Flooding has been one of the recurring occurred natural disasters that induce detrimental impacts on humans, property and environment. Frequent floods is a severe issue and a complex natural phenomenon in Pakistan wit...Flooding has been one of the recurring occurred natural disasters that induce detrimental impacts on humans, property and environment. Frequent floods is a severe issue and a complex natural phenomenon in Pakistan with respect to population affected, environmental degradations, and socio-economic and property damages. The Super Flood, which hit Sindh in 2010, has turned out to be a wakeup call and has underlined the overwhelming challenge of natural calamities, as 2010 flood and the preceding flood in 2011 caused a huge loss to life, property and land use. These floods resulted in disruption of power, telecommunication, and water utilities in many districts of Pakistan, including 22 districts of Sindh. These floods call for risk assessment and hazard mapping of Lower Indus Basin flowing in the Sindh Province as such areas were also inundated in 2010 flood, which were not flooded in the past in this manner. This primary focus of this paper is the use of Multi-criteria Evaluation (MCE) methods in integration with the Geographical Information System (GIS) for the analysis of areas prone to flood. This research demonstrated how GIS tools can be used to produce map of flood vulnerable areas using MCE techniques. Slope, Aspect, Curvature, Soil, and Distance from Drainage, Land use, Precipitation, Flow Direction, and Flow Accumulation are taken as the causative factors for flooding in Lower Indus Basin. Analytical Hierarchy Process-AHP was used for the calculation of weights of all these factors. Finally, a flood hazard Map of Lower Indus Basin was generated which delineates the flood prone areas in the Sindh province along Indus River Basin that could be inundated by potential flooding in future. It is aimed that flood hazard mapping and risk assessment using open source geographic information system can serve as a handy tool for the development of land-use strategies so as to decrease the impact from flooding.展开更多
Terrain characteristics of the land and meteorological properties of the region are the main natural factors for flood. The recent flood in Chennai was unexpected and not triggered by the above factors. Sometimes floo...Terrain characteristics of the land and meteorological properties of the region are the main natural factors for flood. The recent flood in Chennai was unexpected and not triggered by the above factors. Sometimes floods occur when the watershed size is considerably small which leads to the over flow of water inland may due to the encroachment and the urban development of the city. Temporarily used backwater effects in sewers and local drainage channels and creation of unsanitary conditions may cause flooding. Chennai flood was basically claimed to occur due to improper drainage system and underlying strata which was found to be landfill over the ponds and lakes. The Coouam River which flows through the centre of main city was found silting due to the improper drainage facilities and encroachment by the local peoples who causes flood. For the analysis of potentially affected areas Geographical Information System (GIS) integrated with Multicriteria Decision Analysis (MCDA) were employed. Ranking and displaying the potentially risky areas, the spatial Multicriteria analysis was used. It has been revealed that all most all the area’s having populations are likely to be exposed to flood hazard. At the end of study, a map of flood risk areas was generated and studied with a view to assisting decision makers on the consequences posed by the disaster.展开更多
文摘An exhaustive knowledge of flood risk in different spatial locations is essential for developing an effective flood mitigation strategy for a watershed. In the present study, a riskvulnerability analysis to flood is performed. Four components of vulnerability to flood: 1) physical, 2) economic, 3) infrastructure and 4) social;are evaluated individually using a Geographic Information System (GIS) environment. The proposed methodology estimates the impact on infrastructure vulnerability due to inundation of critical facilities, emer gency service stations and bridges. The components of vulnerability are combined to determine an overall vulnerability to flood. The exposures of land use/land cover and soil type (permeability) to flood are also considered to include their effects on severity of flood. The values of probability of occurrence of flood, vulnerability to flood, and exposures of land use and soil type to flood are used to finally compute flood risk at different locations in a watershed. The proposed methodology is implemented for six major damage centers in the Upper Thames River watershed, located in the SouthWestern Ontario, Canada to assess the flood risk. An information system is developed for systematic presentation of the flood risk, probability of occurrence of flood, vulnerability to flood, and exposures of land use and soil type to flood by postal code regions or Forward Sortation Areas (FSAs). The flood information system is designed to provide support for different users, i.e., general public, decisionmakers and water management professionals. An interactive analysis tool is developed within the information system to assist in evaluation of the flood risk in response to a change in land use pattern.
文摘Flooding has been one of the recurring occurred natural disasters that induce detrimental impacts on humans, property and environment. Frequent floods is a severe issue and a complex natural phenomenon in Pakistan with respect to population affected, environmental degradations, and socio-economic and property damages. The Super Flood, which hit Sindh in 2010, has turned out to be a wakeup call and has underlined the overwhelming challenge of natural calamities, as 2010 flood and the preceding flood in 2011 caused a huge loss to life, property and land use. These floods resulted in disruption of power, telecommunication, and water utilities in many districts of Pakistan, including 22 districts of Sindh. These floods call for risk assessment and hazard mapping of Lower Indus Basin flowing in the Sindh Province as such areas were also inundated in 2010 flood, which were not flooded in the past in this manner. This primary focus of this paper is the use of Multi-criteria Evaluation (MCE) methods in integration with the Geographical Information System (GIS) for the analysis of areas prone to flood. This research demonstrated how GIS tools can be used to produce map of flood vulnerable areas using MCE techniques. Slope, Aspect, Curvature, Soil, and Distance from Drainage, Land use, Precipitation, Flow Direction, and Flow Accumulation are taken as the causative factors for flooding in Lower Indus Basin. Analytical Hierarchy Process-AHP was used for the calculation of weights of all these factors. Finally, a flood hazard Map of Lower Indus Basin was generated which delineates the flood prone areas in the Sindh province along Indus River Basin that could be inundated by potential flooding in future. It is aimed that flood hazard mapping and risk assessment using open source geographic information system can serve as a handy tool for the development of land-use strategies so as to decrease the impact from flooding.
文摘Terrain characteristics of the land and meteorological properties of the region are the main natural factors for flood. The recent flood in Chennai was unexpected and not triggered by the above factors. Sometimes floods occur when the watershed size is considerably small which leads to the over flow of water inland may due to the encroachment and the urban development of the city. Temporarily used backwater effects in sewers and local drainage channels and creation of unsanitary conditions may cause flooding. Chennai flood was basically claimed to occur due to improper drainage system and underlying strata which was found to be landfill over the ponds and lakes. The Coouam River which flows through the centre of main city was found silting due to the improper drainage facilities and encroachment by the local peoples who causes flood. For the analysis of potentially affected areas Geographical Information System (GIS) integrated with Multicriteria Decision Analysis (MCDA) were employed. Ranking and displaying the potentially risky areas, the spatial Multicriteria analysis was used. It has been revealed that all most all the area’s having populations are likely to be exposed to flood hazard. At the end of study, a map of flood risk areas was generated and studied with a view to assisting decision makers on the consequences posed by the disaster.