Storm surge along the China's Zhe-Min coast is addressed using the tightly coupled surge model ofADCIRC+SWAN. In this study, we primarily focus on the effects of surge-tide interaction and waveset-up/set-down. And t...Storm surge along the China's Zhe-Min coast is addressed using the tightly coupled surge model ofADCIRC+SWAN. In this study, we primarily focus on the effects of surge-tide interaction and waveset-up/set-down. And the influences of intensity and landing moment of tropical cyclone (TC) arealso presented. The results show that: water elevation without considering tide-surge interactiontends to be underestimated/overestimated when TC lands during astronomical low/high tide;tide-surge coupling effect is more pronounced north of TC track (more than 0.7 m in our cases);irrelevant to TC's intensity, wave set-up south of TC track is negligible because the depth-relatedwave breaking doesn't occur in water body blown towards open seas.展开更多
The Radial Sand Ridges(RSRs)area in the southern Yellow Sea are subject to tropical and extratropical cyclone activities frequently,in which the special geometry feature and moving stationary tidal system result in co...The Radial Sand Ridges(RSRs)area in the southern Yellow Sea are subject to tropical and extratropical cyclone activities frequently,in which the special geometry feature and moving stationary tidal system result in complex storm-induced hydrodynamic processes,especially the tide-surge interactions.We studied a rare weather event influenced simultaneously by an extratropical cyclone EX1410 and Typhoon Vongfong as an example to investigate the characteristics of storm surges,wave-surge,and tide-surge interaction in the RSRs area,and applied a high-resolution integrally-coupled ADCIRC+SWAN model,in which the meteorological forcing inputs are simulated by the WRF-ARW model.The model is validated by records from 4 tide gauges and 2 wave buoys along the Yellow Sea coast.Results show that the tide-surge interactions are of considerable regional heterogeneousness.The surge curves at Lüsi(in south RSRs)and Jianggang(in middle RSRs)have abrupt falls near the time of low tide,where the peak occurrence time of interaction residuals tend to shift towards the mid-ebb period.Significant increase of bed shear stress in shallow waters was proved the dominant factor to affect the tide-surge interaction in broad tidal flats of the RSRs area.Differently,the interaction pattern in the Xiyang Trough(in north RSRs),showed a unique rising in mid-flood period due to the phase advances of real surge waves in relatively deep waters.Therefore,we suggested to the local flood risk management that the tide-surge interaction tends to alleviate the flooding risk in the RSRs area around the time of high tide,but aggravate the risk on the rising tide in the Xiyang Trough and on the falling tide in large-scale tidal flats of the southem RSRs area.展开更多
Nearshore sea levels in the East China Sea(ECS) and the South China Sea(SCS) during tropical cyclones-Typhoon 8007(Joe, 1980) and Typhoon 7209(Betty 1972) were simulated. The tide-surge interactions in the two regions...Nearshore sea levels in the East China Sea(ECS) and the South China Sea(SCS) during tropical cyclones-Typhoon 8007(Joe, 1980) and Typhoon 7209(Betty 1972) were simulated. The tide-surge interactions in the two regions are remarkable and locally produced. The corresponding nonlinear effects were derived from the different nonlinear terms. The contribution of the quadratic friction term is the most important, the shallow term comes second the convective term is the least; the phases of the interactions generated by the various nonlinear terms are asynchronous. Both the quadratic friction and the convective term can stimulate and aggravate the surge structure with more peaks. The bottom friction features have crucial influences on tides and surges, and the interaction is sensitive to the changes of tide and surge.展开更多
The numerical method of lines(MOLs)in coordination with the classical fourth-order Runge Kutta(RK(4,4))method is used to solve shallow water equations(SWEs)for foreseeing water levels owing to the nonlinear interactio...The numerical method of lines(MOLs)in coordination with the classical fourth-order Runge Kutta(RK(4,4))method is used to solve shallow water equations(SWEs)for foreseeing water levels owing to the nonlinear interaction of tide and surge accompanying with a storm along the coast of Bangladesh.The SWEs are developed by extending the body forces with tide generating forces(TGFs).Spatial variables of the SWEs along with the boundary conditions are approximated by means of finite difference technique on an Arakawa C-grid to attain a system of ordinary differential equations(ODEs)of initial valued in time,which are being solved with the aid of the RK(4,4)method.Nested grid technique is adopted to solve coastal complexities closely with least computational cost.A stable tidal solution in the region of our choice is produced by applying the tidal forcing with the major tidal constituent M2(lunar semi-diurnal)along the southern open-sea boundary of the outer scheme.Numerical experimentations are carried out to simulate water levels generated by the cyclonic storm AILA along the coast of Bangladesh.The model simulated results are found to be in a reasonable agreement with the limited available reported data and observations.展开更多
This paper describes in detail the interaction between waves, tides and storm surges and covers theeffects of wave on tides and storm surges and the influence of tides plus storm surges on waves. Some pro-blems deserv...This paper describes in detail the interaction between waves, tides and storm surges and covers theeffects of wave on tides and storm surges and the influence of tides plus storm surges on waves. Some pro-blems deserving attention and improvements are put forward. And finally a combined wave-tide-surge numerical model YE-JWTSM is presented,with all relevant interaction processes considered, includ-ing wave-dependent surface wind stress and bottom-stress as well as current-induced refrac-tion and frequency shift.展开更多
The effects of wave-induced radiation stress on storm surge were simulated during Typhoon Saomai using a wave-current coupled model based on ROMS (Regional Ocean Modeling System) ocean model and SWAN (Simulating Wa...The effects of wave-induced radiation stress on storm surge were simulated during Typhoon Saomai using a wave-current coupled model based on ROMS (Regional Ocean Modeling System) ocean model and SWAN (Simulating Waves Nearshore) wave model. The results show that radiation stress can cause both set-up and set-down in the storm surge. Wave-induced set-up near the coast can be explained by decreasing significant wave heights as the waves propagate shoreward in an approximately uniform direction; wave-induced set-down far from the coast can be explained by the waves propagating in an approximately uniform direction with increasing significant wave heights. The shoreward radiation stress is the essential reason for the wave-induced set-up along the coast. The occurrence of set-down can be also explained by the divergence of the radiation stress. The maximum wave-induced set-up occurs on the right side of the Typhoon path, whereas the maximum wave induced set-down occurs on the left side.展开更多
Because of the special topography and large tidal range in the South Yellow Sea,the dynamic process of tide and storm surge is very complicated.The shallow water circulation model Advanced Circulation(ADCIRC)was used ...Because of the special topography and large tidal range in the South Yellow Sea,the dynamic process of tide and storm surge is very complicated.The shallow water circulation model Advanced Circulation(ADCIRC)was used to simulate the storm surge process during typhoon Winnie,Prapiroon,and Damrey,which represents three types of tracks attacking the South Yellow Sea,which are,moving northward after landing,no landing but active in offshore areas,and landing straightly to the coastline.Numerical experiments were carried out to investigate the effects of tidal phase on the tide-surge interaction as well as storm surge.The results show that the peak surge caused by Winnie and Prapiroon occurs 2-5 h before the high tide and its occurring time relative to high tide has little change with tidal phase variations.On the contrary,under the action of Damrey,the occurring time of the peak surge relative to high tide varies with tidal phase.The variation of tide-surge interaction is about 0.06-0.37 m,and the amplitude variations of interaction are smooth when tidal phase changes for Typhoon Winnie and Prapiroon.While the interaction is about 0.07-0.69 m,and great differences exists among the stations for Typhoon Damrey.It can be concluded that the tide-surge interaction of the former is dominated by the tidal phase modulation,and the time of surge peak is insensitive to the tidal phase variation.While the interaction of the latter is dominated by storm surge modulation due to the water depth varying with tide,the time of surge peak is significantly affected by tidal phase.Therefore,influence of tidal phase on storm surge is related to typhoon tracks which may provide very useful information at the design stage of coastal protection systems.展开更多
The hydrodynamic behaviour of an oscillating wave surge converter(OWSC) in large motion excited by nonlinear waves is investigated. The mechanism through which the wave energy is absorbed in the nonlinear system is an...The hydrodynamic behaviour of an oscillating wave surge converter(OWSC) in large motion excited by nonlinear waves is investigated. The mechanism through which the wave energy is absorbed in the nonlinear system is analysed. The mathematical model used is based on the velocity potential theory together with the fully nonlinear boundary conditions on the moving body surface and deforming free surface. The problem is solved by the boundary element method. Numerical results are obtained to show how to adjust the mechanical properties of the OWSC to achieve the best efficiency in a given wave, together with the nonlinear effect of the wave height. Numerical results are also provided to show the behaviour of a given OWSC in waves of different frequencies and different heights.展开更多
The effects of hurricane forward speed(V)and approach angle(θ)on storm surge are important and a systematic investigation covering possible and continuous ranges of these parameters has not been done before.Here we p...The effects of hurricane forward speed(V)and approach angle(θ)on storm surge are important and a systematic investigation covering possible and continuous ranges of these parameters has not been done before.Here we present such a study with a numerical experiment using the Finite Volume Community Ocean Model(FVCOM).The hurricane track is simplified as a straight line,such that V andθfully define the motion of the hurricane.The maximum surge is contributed by both free waves and a forced storm surge wave moving with the hurricane.Among the free waves,Kelvin-type waves can only propagate in the down-coast direction.Simulations show that those waves can only have a significant positive storm surge when the hurricane velocity has a down-coast component.The optimal values of V andθthat maximize the storm surge in an idealized semi-circular ocean basin are functions of the bathymetry.For a constant bathymetry,the maximum surge occurs when the hurricane approaches the coast from the normal direction when the free wave generation is minimal;for a stepped bathymetry,the maximum surge occurs at a certain acute approach angle which maximizes the duration of persistent wind forcing;a step-like bathymetry with a sloped shelf is similar to the stepped bathymetry,with the added possibility of landfall resonance when the free and forced waves are moving at about the same velocity.For other cases,the storm surge is smaller,given other parameters(hurricane size,maximum wind speed,etc.)unchanged.展开更多
The northern South China Sea(SCS) is frequently affected by typhoons. During severe storm events, wave-current interactions produce storm surges causing enormous damage in the path of the typhoon. To evaluate the infl...The northern South China Sea(SCS) is frequently affected by typhoons. During severe storm events, wave-current interactions produce storm surges causing enormous damage in the path of the typhoon. To evaluate the influence of wave-current interactions on storm surge, we used a coupled ocean-atmospherewave-sediment transport(COAWST) modeling system with radiation-stress and vortex-force formulations to simulate two typically intense tropical storms that invaded the SCS, namely Typhoons Nuri(2008) and Hagupit(2008), and compared results with observations from the Hong Kong Observatory. Both radiationstress and vortex-force formulations significantly improved the accuracy of the simulation. Depending on which typhoon and the topography encountered, the influence of surface waves on the oceanic circulation showed different characteristics, including the differences of range and intensity of storm surge between vortex-force and radiation-stress experiments. During typhoon landing, strong sea-surface elevation in concert with wave set-up/set-down caused the adjustment of the momentum balance. In the direction perpendicular to the current, but especially in the cross-shore direction, the pressure gradient and wave effects on the current dominated the momentum balance.展开更多
With an increasing emphasis on renewable energy resources, wave power technology is becoming one of the realistic solutions. However, the 2011 tsunami in Japan was a harsh reminder of the ferocity of the ocean. It is ...With an increasing emphasis on renewable energy resources, wave power technology is becoming one of the realistic solutions. However, the 2011 tsunami in Japan was a harsh reminder of the ferocity of the ocean. It is known that tsunamis are nearly undetectable in the open ocean but as the wave approaches the shore its energy is compressed, creating large destructive waves. The question posed here is whether an oscillating wave surge converter (OWSC) could withstand the force of an incoming tsunami. Several tools are used to provide an answer: an analytical 3D model developed within the framework of linear theory, a numerical model based on the non-linear shallow water equations and empirical formulas. Numerical results show that run-up and draw-down can be amplified under some circumstances, leading to an OWSC lying on dry ground t展开更多
A two-dimensional coupled tide-surge model was used to investigate the effects of tide-surge interactions on storm surges along the coast of the Bohai Sea, Yellow Sea, and East China Sea. In order to estimate the impa...A two-dimensional coupled tide-surge model was used to investigate the effects of tide-surge interactions on storm surges along the coast of the Bohai Sea, Yellow Sea, and East China Sea. In order to estimate the impacts of tide-surge interactions on storm surge elevations, Typhoon 7203 was assumed to arrive at 12 different times, with all other conditions remaining constant. This allowed simulation of tide and total water levels for 12 separate cases. Numerical simulation results for Yingkou, Huludao, Shijiusuo, and Lianyungang tidal stations were analyzed. Model results showed wide variations in storm surge elevations across the 12 cases. The largest difference between 12 extreme storm surge elevation values was of up to 58 cm and occurred at Yingkou tidal station. The results indicate that the effects of tide-surge interactions on storm surge elevations are very significant. It is therefore essential that these are taken into account when predicting storm surge elevations.展开更多
基金the support of National Natural Science Foundation of China (11772339)the Strategic Priority Research Programs (Category B) of the Chinese Academy of Sciences (XDB22040203)
文摘Storm surge along the China's Zhe-Min coast is addressed using the tightly coupled surge model ofADCIRC+SWAN. In this study, we primarily focus on the effects of surge-tide interaction and waveset-up/set-down. And the influences of intensity and landing moment of tropical cyclone (TC) arealso presented. The results show that: water elevation without considering tide-surge interactiontends to be underestimated/overestimated when TC lands during astronomical low/high tide;tide-surge coupling effect is more pronounced north of TC track (more than 0.7 m in our cases);irrelevant to TC's intensity, wave set-up south of TC track is negligible because the depth-relatedwave breaking doesn't occur in water body blown towards open seas.
基金Supported by the National Key Research and Development Program of China(Nos.2016YFC1402000,2018YFC0407503)the Fundamental Research Fund for Central Public-interest Scientific Institution(No.Y218009)
文摘The Radial Sand Ridges(RSRs)area in the southern Yellow Sea are subject to tropical and extratropical cyclone activities frequently,in which the special geometry feature and moving stationary tidal system result in complex storm-induced hydrodynamic processes,especially the tide-surge interactions.We studied a rare weather event influenced simultaneously by an extratropical cyclone EX1410 and Typhoon Vongfong as an example to investigate the characteristics of storm surges,wave-surge,and tide-surge interaction in the RSRs area,and applied a high-resolution integrally-coupled ADCIRC+SWAN model,in which the meteorological forcing inputs are simulated by the WRF-ARW model.The model is validated by records from 4 tide gauges and 2 wave buoys along the Yellow Sea coast.Results show that the tide-surge interactions are of considerable regional heterogeneousness.The surge curves at Lüsi(in south RSRs)and Jianggang(in middle RSRs)have abrupt falls near the time of low tide,where the peak occurrence time of interaction residuals tend to shift towards the mid-ebb period.Significant increase of bed shear stress in shallow waters was proved the dominant factor to affect the tide-surge interaction in broad tidal flats of the RSRs area.Differently,the interaction pattern in the Xiyang Trough(in north RSRs),showed a unique rising in mid-flood period due to the phase advances of real surge waves in relatively deep waters.Therefore,we suggested to the local flood risk management that the tide-surge interaction tends to alleviate the flooding risk in the RSRs area around the time of high tide,but aggravate the risk on the rising tide in the Xiyang Trough and on the falling tide in large-scale tidal flats of the southem RSRs area.
基金Contribution No. 2234 from the Institute of Oceanology, Chinese Academy of Sciences
文摘Nearshore sea levels in the East China Sea(ECS) and the South China Sea(SCS) during tropical cyclones-Typhoon 8007(Joe, 1980) and Typhoon 7209(Betty 1972) were simulated. The tide-surge interactions in the two regions are remarkable and locally produced. The corresponding nonlinear effects were derived from the different nonlinear terms. The contribution of the quadratic friction term is the most important, the shallow term comes second the convective term is the least; the phases of the interactions generated by the various nonlinear terms are asynchronous. Both the quadratic friction and the convective term can stimulate and aggravate the surge structure with more peaks. The bottom friction features have crucial influences on tides and surges, and the interaction is sensitive to the changes of tide and surge.
文摘The numerical method of lines(MOLs)in coordination with the classical fourth-order Runge Kutta(RK(4,4))method is used to solve shallow water equations(SWEs)for foreseeing water levels owing to the nonlinear interaction of tide and surge accompanying with a storm along the coast of Bangladesh.The SWEs are developed by extending the body forces with tide generating forces(TGFs).Spatial variables of the SWEs along with the boundary conditions are approximated by means of finite difference technique on an Arakawa C-grid to attain a system of ordinary differential equations(ODEs)of initial valued in time,which are being solved with the aid of the RK(4,4)method.Nested grid technique is adopted to solve coastal complexities closely with least computational cost.A stable tidal solution in the region of our choice is produced by applying the tidal forcing with the major tidal constituent M2(lunar semi-diurnal)along the southern open-sea boundary of the outer scheme.Numerical experimentations are carried out to simulate water levels generated by the cyclonic storm AILA along the coast of Bangladesh.The model simulated results are found to be in a reasonable agreement with the limited available reported data and observations.
基金Contribution No. 2810 from Institute of Oceanology, Chinese Academy of Sciences. This work supported by National Eighth Five Year Project (D09 920109), Chinese Academy of Sciences, and State Education Comission.
文摘This paper describes in detail the interaction between waves, tides and storm surges and covers theeffects of wave on tides and storm surges and the influence of tides plus storm surges on waves. Some pro-blems deserving attention and improvements are put forward. And finally a combined wave-tide-surge numerical model YE-JWTSM is presented,with all relevant interaction processes considered, includ-ing wave-dependent surface wind stress and bottom-stress as well as current-induced refrac-tion and frequency shift.
基金supported by the Special Funding of Marine Science StudyState Ocean Administration under contract No.20090513-2+2 种基金the National Natural Science Foundation of China under contract No.40976008Innovation Project from the Chinese Academy of Sciences under contract No.KZCX2-EW-209the Key program of Knowledge Innovation Project of Chinese Academyof Sciences under contract No.KZCX1-YW-12
文摘The effects of wave-induced radiation stress on storm surge were simulated during Typhoon Saomai using a wave-current coupled model based on ROMS (Regional Ocean Modeling System) ocean model and SWAN (Simulating Waves Nearshore) wave model. The results show that radiation stress can cause both set-up and set-down in the storm surge. Wave-induced set-up near the coast can be explained by decreasing significant wave heights as the waves propagate shoreward in an approximately uniform direction; wave-induced set-down far from the coast can be explained by the waves propagating in an approximately uniform direction with increasing significant wave heights. The shoreward radiation stress is the essential reason for the wave-induced set-up along the coast. The occurrence of set-down can be also explained by the divergence of the radiation stress. The maximum wave-induced set-up occurs on the right side of the Typhoon path, whereas the maximum wave induced set-down occurs on the left side.
基金Supported by the National Key Research and Development Program of China(No.2016YFC1402000)
文摘Because of the special topography and large tidal range in the South Yellow Sea,the dynamic process of tide and storm surge is very complicated.The shallow water circulation model Advanced Circulation(ADCIRC)was used to simulate the storm surge process during typhoon Winnie,Prapiroon,and Damrey,which represents three types of tracks attacking the South Yellow Sea,which are,moving northward after landing,no landing but active in offshore areas,and landing straightly to the coastline.Numerical experiments were carried out to investigate the effects of tidal phase on the tide-surge interaction as well as storm surge.The results show that the peak surge caused by Winnie and Prapiroon occurs 2-5 h before the high tide and its occurring time relative to high tide has little change with tidal phase variations.On the contrary,under the action of Damrey,the occurring time of the peak surge relative to high tide varies with tidal phase.The variation of tide-surge interaction is about 0.06-0.37 m,and the amplitude variations of interaction are smooth when tidal phase changes for Typhoon Winnie and Prapiroon.While the interaction is about 0.07-0.69 m,and great differences exists among the stations for Typhoon Damrey.It can be concluded that the tide-surge interaction of the former is dominated by the tidal phase modulation,and the time of surge peak is insensitive to the tidal phase variation.While the interaction of the latter is dominated by storm surge modulation due to the water depth varying with tide,the time of surge peak is significantly affected by tidal phase.Therefore,influence of tidal phase on storm surge is related to typhoon tracks which may provide very useful information at the design stage of coastal protection systems.
基金financially supported by Lloyd's Register Foundation through the joint centre involving University College London,Shanghai Jiao Tong University and Harbin Engineering Universitysupported by the National Natural Science Foundation of China(Grant No.11472088)
文摘The hydrodynamic behaviour of an oscillating wave surge converter(OWSC) in large motion excited by nonlinear waves is investigated. The mechanism through which the wave energy is absorbed in the nonlinear system is analysed. The mathematical model used is based on the velocity potential theory together with the fully nonlinear boundary conditions on the moving body surface and deforming free surface. The problem is solved by the boundary element method. Numerical results are obtained to show how to adjust the mechanical properties of the OWSC to achieve the best efficiency in a given wave, together with the nonlinear effect of the wave height. Numerical results are also provided to show the behaviour of a given OWSC in waves of different frequencies and different heights.
基金The National Key R&D Project under contract No.2017YFC1404201
文摘The effects of hurricane forward speed(V)and approach angle(θ)on storm surge are important and a systematic investigation covering possible and continuous ranges of these parameters has not been done before.Here we present such a study with a numerical experiment using the Finite Volume Community Ocean Model(FVCOM).The hurricane track is simplified as a straight line,such that V andθfully define the motion of the hurricane.The maximum surge is contributed by both free waves and a forced storm surge wave moving with the hurricane.Among the free waves,Kelvin-type waves can only propagate in the down-coast direction.Simulations show that those waves can only have a significant positive storm surge when the hurricane velocity has a down-coast component.The optimal values of V andθthat maximize the storm surge in an idealized semi-circular ocean basin are functions of the bathymetry.For a constant bathymetry,the maximum surge occurs when the hurricane approaches the coast from the normal direction when the free wave generation is minimal;for a stepped bathymetry,the maximum surge occurs at a certain acute approach angle which maximizes the duration of persistent wind forcing;a step-like bathymetry with a sloped shelf is similar to the stepped bathymetry,with the added possibility of landfall resonance when the free and forced waves are moving at about the same velocity.For other cases,the storm surge is smaller,given other parameters(hurricane size,maximum wind speed,etc.)unchanged.
基金Supported by the National Key Research and Development Program of China(No.2016YFC1402000)the National Natural Science Foundation of China(Nos.41376027,U1133001,41606024)+3 种基金the National Program on Global Change and Air-Sea Interaction(No.GASI-IPOVAI-01-06)the NSFC-Shandong Joint Fund for Marine Science Research Centers(No.U1406401)the NSFC Innovative Group Grant Project(No.41421005)the High Performance Computing Environment Qingdao Branch of Chinese Academy of Science(CAS)
文摘The northern South China Sea(SCS) is frequently affected by typhoons. During severe storm events, wave-current interactions produce storm surges causing enormous damage in the path of the typhoon. To evaluate the influence of wave-current interactions on storm surge, we used a coupled ocean-atmospherewave-sediment transport(COAWST) modeling system with radiation-stress and vortex-force formulations to simulate two typically intense tropical storms that invaded the SCS, namely Typhoons Nuri(2008) and Hagupit(2008), and compared results with observations from the Hong Kong Observatory. Both radiationstress and vortex-force formulations significantly improved the accuracy of the simulation. Depending on which typhoon and the topography encountered, the influence of surface waves on the oceanic circulation showed different characteristics, including the differences of range and intensity of storm surge between vortex-force and radiation-stress experiments. During typhoon landing, strong sea-surface elevation in concert with wave set-up/set-down caused the adjustment of the momentum balance. In the direction perpendicular to the current, but especially in the cross-shore direction, the pressure gradient and wave effects on the current dominated the momentum balance.
基金support provided by the Science Foundation Ireland(SFI)under the project High-end computational modeling for wave energy systemsthe Framework Program for Research,Technological Development,and Innovation of the Cyprus Research Promotion Foundation under the Project AΣTI/0308(BE)/05+1 种基金the Irish Research Council for Science Engineering and Technology(IRCSET)Aquamarine Power and by the European Union’s Seventh Framework Programme for research,technological development and demonstration under the grant agreement ASTARTE No.603839
文摘With an increasing emphasis on renewable energy resources, wave power technology is becoming one of the realistic solutions. However, the 2011 tsunami in Japan was a harsh reminder of the ferocity of the ocean. It is known that tsunamis are nearly undetectable in the open ocean but as the wave approaches the shore its energy is compressed, creating large destructive waves. The question posed here is whether an oscillating wave surge converter (OWSC) could withstand the force of an incoming tsunami. Several tools are used to provide an answer: an analytical 3D model developed within the framework of linear theory, a numerical model based on the non-linear shallow water equations and empirical formulas. Numerical results show that run-up and draw-down can be amplified under some circumstances, leading to an OWSC lying on dry ground t
基金provided by the National Natural Science Foundation of China(Grant No.41371496)the National Science and Technology Support Program(Grant No.2013BAK05B04)+2 种基金the Natural Science Foundation of Shandong Province of China(Grant No.ZR2014DM017)the Opening Fund of Shandong Provincial Key Laboratory of Marine Ecology and Environment&Disaster Prevention and Mitigation(Grant No.201411)the Applied Research Fund for Postdoctoral Researchers of Qingdao(Grant No.82214263)
文摘A two-dimensional coupled tide-surge model was used to investigate the effects of tide-surge interactions on storm surges along the coast of the Bohai Sea, Yellow Sea, and East China Sea. In order to estimate the impacts of tide-surge interactions on storm surge elevations, Typhoon 7203 was assumed to arrive at 12 different times, with all other conditions remaining constant. This allowed simulation of tide and total water levels for 12 separate cases. Numerical simulation results for Yingkou, Huludao, Shijiusuo, and Lianyungang tidal stations were analyzed. Model results showed wide variations in storm surge elevations across the 12 cases. The largest difference between 12 extreme storm surge elevation values was of up to 58 cm and occurred at Yingkou tidal station. The results indicate that the effects of tide-surge interactions on storm surge elevations are very significant. It is therefore essential that these are taken into account when predicting storm surge elevations.