Suzhou City,located in the Yangtze River Delta in China,is prone to flooding due to a complex combination of natural factors,including its monsoon climate,low elevation,and tidally influenced position,as well as inten...Suzhou City,located in the Yangtze River Delta in China,is prone to flooding due to a complex combination of natural factors,including its monsoon climate,low elevation,and tidally influenced position,as well as intensive human activities.The Large Encirclement Flood Control Project(LEFCP)was launched to cope with serious floods in the urban area.This project changed the spatiotemporal pattern of flood processes and caused spatial diversion of floods from the urban area to the outskirts of the city.Therefore,this study developed a distributed flood simulation model in order to understand this transition of flood processes.The results revealed that the LEFCP effectively protected the urban areas from floods,but the present scheduling schemes resulted in the spatial diversion of floods to the outskirts of the city.With rainstorm frequencies of 10.0%to 0.5%,the water level differences between two representative water level stations(Miduqiao(MDQ)and Fengqiao(FQ))located inside and outside the LEFCP area,ranged from 0.75 m to 0.24 m and from 1.80 m to 1.58 m,respectively.In addition,the flood safety margin at MDQ and the duration with the water level exceeding the warning water level at FQ ranged from 0.95 m to 0.43 m and from 4 h to 22 h,respectively.Rational scheduling schemes for the hydraulic facilities of the LEFCP in extreme precipitation cases were developed ac-cording to food simulations under seven scheduling scenarios.This helps to regulate the spatial flood diversion caused by the LEFCP during extreme precipitation.展开更多
This paper introduces the results of selecting and breeding a micro-organism, Strain I, and its core model experiment investigation for microbial enhanced oil recovery (MEOR). Strain I was separated from the formation...This paper introduces the results of selecting and breeding a micro-organism, Strain I, and its core model experiment investigation for microbial enhanced oil recovery (MEOR). Strain I was separated from the formation water of the Dagang oil field, with analytical results showing that Strain I is a gram-positive bacillus. A further study revealed that this strain has an excellent tolerance of environmental stresses: It can survive in conditions of 70℃, 30 wt% salinity and pH3.5-9.4. Strain I can metabolize biosurfactants that could increase the oil recovery ratio, use crude oil as the single carbon source, and decompose long-chain paraffin with a large molecular weight into short-chain paraffin with a small molecular weight. The core model experiment shows that Strain I enhances oil recovery well. Using 2 vol% of the fermentation solution of Strain I to displace the crude oil in the synthetic plastic bonding core could increase the recovery ratio by 21.6%.展开更多
The flood hazard management is one of the major challenges in the floodplain regions worldwide.With the rise in population growth and the spread of infrastructural development,the level of risk has increased over time...The flood hazard management is one of the major challenges in the floodplain regions worldwide.With the rise in population growth and the spread of infrastructural development,the level of risk has increased over time.Therefore,the prediction of flood susceptible area is a key challenge for the adoption of management plans.Flood susceptibility modeling is technically a common work,but it is still a very tough job to validate flood susceptible models in a very rigorous and scientific manner.Therefore,the present work in the Atreyee River Basin of India and Bangladesh was planned to establish artificial neural network(ANN),radial basis function(RBF),random forest(RF)and their ensemble-based flood susceptibility models.The flood susceptible models were constructed based on nine flood conditioning parameters.The flood susceptibility models were validated in a conventional way using the receiver operating curve(ROC).To validate the flood-susceptible models,a two dimensional(2D)hydraulic flood simulation model was developed.Also,the index of flood vulnerability model was developed and applied for validating the flood susceptible models,which was a very unique way to validate the predictive models.Friedman test and Wilcoxon Signed rank test were employed to compare the generated flood susceptible models.Results showed that 11.95%-12.99%of the entire basin area(10188.4 km^(2))comes under very high flood-susceptible zones.Accuracy evaluation results have shown that the performance of ensemble flood susceptible models outperforms other standalone machine learning models.The flood simulation model and IFV model were also spatially adjusted with the flood susceptibility models.Therefore,the present study recommended for the ensemble flood susceptibility prediction and IFV based validation along with conventional ways.展开更多
Flooding is a common natural disaster that causes enormous economic, social, and human losses. Of various flood routing methods, the dynamic wave model is one of the best approaches for the prediction of the character...Flooding is a common natural disaster that causes enormous economic, social, and human losses. Of various flood routing methods, the dynamic wave model is one of the best approaches for the prediction of the characteristics of floods during their propagations in natural rivers because all of the terms of the momentum equation are considered in the model. However, no significant research has been conducted on how the model sensitivity affects the accuracy of the downstream hydrograph. In this study, a comprehensive analysis of the input parameters 9f the dynamic wave model was performed through field applications in natural rivers and routing experiments in artificial channels using the graphical multi-parametric sensitivity analysis (GMPSA). The results indicate that the effects of input parameter errors on the output results are more significant in special situations, such as lower values of Manning's roughness coefficient and/or a steeper bed slope on the characteristics of a design hydrograph, larger values of the skewness factor and/or time to peak on the channel characteristics, larger values of Manning's roughness coefficient and/or the bed slope on the space step, and lower values of Manning's roughness coefficient and/or a steeper bed slope on the time step and weighting factor.展开更多
Intense human activities have greatly changed the flood generation conditions in most areas of the world, and have destroyed the consistency in the annual flood peak and volume series. For design flood estimation, coa...Intense human activities have greatly changed the flood generation conditions in most areas of the world, and have destroyed the consistency in the annual flood peak and volume series. For design flood estimation, coaxial correlation diagram and conceptual hydrological model are two frequently used tools to adjust and reconstruct the flood series under human disturbance. This study took a typical mountain catchment of the Haihe River Basin as an example to investigate the effects of human activities on flood regime and to compare and assess the two adjustment methods. The main purpose is to construct a conceptual hydrological model which can incorporate the effects of human activities. The results show that the coaxial correlation diagram is simple and widely-used, but can only adjust the time series of total flood volumes. Therefore, it is only applicable under certain conditions(e.g. There is a strong link between the flood peaks and volumes and the link is not significantly affected by human activities). The conceptual model is a powerful tool to adjust the time series of both flood peak flows and flood volumes over different durations provided that it is closely related to the catchment hydrological characteristics, specifically accounting for the effects of human activities, and incorporating expert knowledge when estimating or calibrating parameters. It is suggested that the two methods should be used together to cross check each other.展开更多
Immiscible water-alternating-gas(WAG) flooding is an EOR technique that has proven successful for water drive reservoirs due to its ability to improve displacement and sweep efficiency.Nevertheless,considering the c...Immiscible water-alternating-gas(WAG) flooding is an EOR technique that has proven successful for water drive reservoirs due to its ability to improve displacement and sweep efficiency.Nevertheless,considering the complicated phase behavior and various multiphase flow characteristics,gas tends to break through early in production wells in heterogeneous formations because of overriding,fingering,and channeling,which may result in unfavorable recovery performance.On the basis of phase behavior studies,minimum miscibility pressure measurements,and immiscible WAG coreflood experiments,the cubic B-spline model(CBM) was employed to describe the three-phase relative permeability curve.Using the Levenberg-Marquardt algorithm to adjust the vector of unknown model parameters of the CBM sequentially,optimization of production performance including pressure drop,water cut,and the cumulative gas-oil ratio was performed.A novel numerical inversion method was established for estimation of the water-oil-gas relative permeability curve during the immiscible WAG process.Based on the quantitative characterization of major recovery mechanisms,the proposed method was validated by interpreting coreflood data of the immiscible WAG experiment.The proposed method is reliable and can meet engineering requirements.It provides a basic calculation theory for implicit estimation of oil-water-gas relative permeability curve.展开更多
Land use/cover change (LUCC) is one of the main boundary conditions which influence many hydrologic processes. In view of the importance of Taihu Lake Watershed in China and the urgency of discovering the impacts of L...Land use/cover change (LUCC) is one of the main boundary conditions which influence many hydrologic processes. In view of the importance of Taihu Lake Watershed in China and the urgency of discovering the impacts of LUCC on storm runoff, two flood events under five land cover scenarios in the Xitiaoxi River Basin of the upstream of Taihu Lake watershed were simulated by distributed hydrologic modeling system HEC-HMS. The influences of each land cover on storm runoff were discussed. It was concluded that under the same rainstorm the ascending order of runoff coefficient and peak flow produced by the 5 different land covers were woodland, shrub, grassland, arable land, and built-up land; the descending order of swelling time were woodland, shrub, grassland, arable land, and built-up land. Scenario of built-up land was the first to reach peak flow, then arable land, grassland, shrub, and woodland. There were close relationships between the runoff coefficients produced by the 5 different land covers. The degrees of impacts on runoff coefficient of land cover change modes were sorted by descending: woodland to built-up land, shrub to built-up land, grassland to built-up land, arable land to built-up land, woodland to arable land, shrub to arable land, arable land to grassland, shrub to grassland, grassland to arable land, and woodland to shrub. Urbanization will contribute to flood disaster, while forestation will mitigate flood disaster.展开更多
This paper describes a flood routing method applied in an ungauged basin, utilizing the Muskingum model with variable parameters of wave travel time K and weight coefficient of discharge x based on the physical charac...This paper describes a flood routing method applied in an ungauged basin, utilizing the Muskingum model with variable parameters of wave travel time K and weight coefficient of discharge x based on the physical characteristics of the river reach and flood, including the reach slope, length, width, and flood discharge. Three formulas for estimating parameters of wide rectangular, triangular, and parabolic cross sections are proposed. The influence of the flood on channel flow routing parameters is taken into account. The HEC-HMS hydrological model and the geospatial hydrologic analysis module HEC-GeoHMS were used to extract channel or watershed characteristics and to divide sub-basins. In addition, the initial and constant-rate method, user synthetic unit hydrograph method, and exponential recession method were used to estimate runoff volumes, the direct runoff hydrograph, and the baseflow hydrograph, respectively. The Muskingum model with variable parameters was then applied in the Louzigou Basin in Henan Province of China, and of the results, the percentages of flood events with a relative error of peak discharge less than 20% and runoff volume less than 10% are both 100%. They also show that the percentages of flood events with coefficients of determination greater than 0.8 are 83.33%, 91.67%, and 87.5%, respectively, for rectangular, triangular, and parabolic cross sections in 24 flood events. Therefore, this method is applicable to ungauged basins.展开更多
To verify the accuracy of weir and orifice formula and analyze the hydraulic characteristics of exchange flow in a manhole,a three-dimensional numerical model was proposed to assess the exchange flow rate between the ...To verify the accuracy of weir and orifice formula and analyze the hydraulic characteristics of exchange flow in a manhole,a three-dimensional numerical model was proposed to assess the exchange flow rate between the surface and sewer pipe systems based on the real-world scale model.The hydrodynamic model is based on the three-dimensional Navier-Stokes equations including the standard k-εmodel for turbulence processes,and the volume of fluid(VOF)method for capturing the free surface.The results of the computational fluid dynamics(CFD)simulation are compared with the conventional overflow equations,showing that the weir and orifice formula is appropriate to determine the exchange flow rate between two systems in this specific study case.Streamlines and velocity contours at the center profile under both the inflow and surcharge conditions show that the exchange flow is directly related to the water level on the surface and the junction area between the manhole and right pipe.The results demonstrate the potential application of CFD in analyzing the interaction of urban flood flows,which can provide much clearer details of the interaction process.展开更多
Flood risk analysis is the instrument for local officials to create a sound strategy and adaptation plans for the impacts of inundation due to heavy rains, climate change and sea level rise. Hence, cities with aging i...Flood risk analysis is the instrument for local officials to create a sound strategy and adaptation plans for the impacts of inundation due to heavy rains, climate change and sea level rise. Hence, cities with aging infrastructure are retrofitting their stormwater management systems to mitigate the impacts. However determining the most at risk areas and the options for corrections is more challenging. As a result, there is an urgent need to develop a screening tool to analyze watersheds and identify the most at-risk areas. High-quality, open source data and sophisticated spatial analysis techniques allow engineers to create innovative ways to conduct watershed wide inundation analysis. In th</span><span style="font-family:Verdana;">is study, the investigators developed </span></span></span></span><span></span><span style="font-family:Verdana;"><span style="font-family:Verdana;"><span style="font-family:Verdana;">a </span></span></span><span style="font-family:Verdana;"><span style="font-family:Verdana;"><span style="font-family:Verdana;">screening tool to identify at-ri</span></span></span><span style="font-family:Verdana;"><span style="font-family:Verdana;"><span style="font-family:Verdana;">sk properties by combining readily available data on topography, groundwater, surface water, tidal information for coastal communities, soils, open space, and rainfall data. Once the screening tool is developed, the means to identify and prioritize improvements to be funded with scarce capital funds is the next step.</span></span></span><span><span><span style="font-family:""> </span></span></span><span><span><span style="font-family:""><span style="font-family:Verdana;">A tool box of solutions was developed to address flood risk and vulnerability. Testing of the screening tool was conducted in Browa</span><span style="font-family:Verdana;">rd County, Florida and shows encouraging results. Comparison wit</span><span style="font-family:Verdana;">h FEMA Flood maps and repetitive loss mapping indicates that the process works in a coastal community. The framework appears to be viable across cities that may be inundated with water due to sea-level rise, rainfall, runoff upstream, and other natural events.展开更多
Glacial outburst floods(GLOFs) in alpine regions tend to be relatively complicated, multi-stage catastrophes, capable of causing significant geomorphologic changes in channel surroundings and posing severe threats t...Glacial outburst floods(GLOFs) in alpine regions tend to be relatively complicated, multi-stage catastrophes, capable of causing significant geomorphologic changes in channel surroundings and posing severe threats to infrastructure and the safety and livelihoods of human communities. GLOF disasters have been observed and potential hazards can be foreseen due to the newly formed glacial lakes or the expansion of existing ones in the Poiqu River Basin in Tibet, China. Here we presented a synthesis of GLOF-related studies including triggering mechanism(s), dam breach modeling, and flood routing simulation that have been employed to reconstruct or forecast GLOF hydrographs. We provided a framework for probability-based GLOFs simulation and hazard mapping in the Poiqu River Basin according to available knowledge. We also discussed the uncertainties and challenges in the model chains, which may form the basis for further research.展开更多
Flooding has been one of the recurring occurred natural disasters that induce detrimental impacts on humans, property and environment. Frequent floods is a severe issue and a complex natural phenomenon in Pakistan wit...Flooding has been one of the recurring occurred natural disasters that induce detrimental impacts on humans, property and environment. Frequent floods is a severe issue and a complex natural phenomenon in Pakistan with respect to population affected, environmental degradations, and socio-economic and property damages. The Super Flood, which hit Sindh in 2010, has turned out to be a wakeup call and has underlined the overwhelming challenge of natural calamities, as 2010 flood and the preceding flood in 2011 caused a huge loss to life, property and land use. These floods resulted in disruption of power, telecommunication, and water utilities in many districts of Pakistan, including 22 districts of Sindh. These floods call for risk assessment and hazard mapping of Lower Indus Basin flowing in the Sindh Province as such areas were also inundated in 2010 flood, which were not flooded in the past in this manner. This primary focus of this paper is the use of Multi-criteria Evaluation (MCE) methods in integration with the Geographical Information System (GIS) for the analysis of areas prone to flood. This research demonstrated how GIS tools can be used to produce map of flood vulnerable areas using MCE techniques. Slope, Aspect, Curvature, Soil, and Distance from Drainage, Land use, Precipitation, Flow Direction, and Flow Accumulation are taken as the causative factors for flooding in Lower Indus Basin. Analytical Hierarchy Process-AHP was used for the calculation of weights of all these factors. Finally, a flood hazard Map of Lower Indus Basin was generated which delineates the flood prone areas in the Sindh province along Indus River Basin that could be inundated by potential flooding in future. It is aimed that flood hazard mapping and risk assessment using open source geographic information system can serve as a handy tool for the development of land-use strategies so as to decrease the impact from flooding.展开更多
This paper proposes a method of small reservoir flood detention modeling that utilizes data from the American land resources satellite Landsat TM/ETM+. Precipitation and potential evapotranspiration are taken as the c...This paper proposes a method of small reservoir flood detention modeling that utilizes data from the American land resources satellite Landsat TM/ETM+. Precipitation and potential evapotranspiration are taken as the control conditions in this method on the basis of basin terrain classification. The objective of this method is to solve the question of a small-scale water conservancy project’s influence on flood forecasting precision, which can be used in the basin with multitudinous small reservoirs in the upstream region and can help estimate non-runoff data for small reservoir runoff. Taking the 20060826 flood as an example, the flood detention quantity of 19 small reservoirs is modeled. The results show that the absolute error of the total flood detention quantity is 0.2×10 4 m 3 , and the relative error is 0.12%. The flood detention quantity of small reservoirs in the entire basin is then modeled using this method, and the primary flood forecasting model is adjusted. After adjustment, the precision is significantly improved, with the relative error decreasing from 31.8% to 10.1%.展开更多
The frequency of coastal flood damages is expected to increase significantly during the twenty-first century as sea level rises in the coastal floodplain.Coastal digital elevation model(DEM)data describing coastal top...The frequency of coastal flood damages is expected to increase significantly during the twenty-first century as sea level rises in the coastal floodplain.Coastal digital elevation model(DEM)data describing coastal topography are essential for assessing future flood-related damages and understanding the impacts of sea-level rise.The Shuttle Radar Topography Mission(SRTM)and Advanced Spaceborne Thermal Emission and Reflection Radiometer Global Digital Elevation Model(ASTER GDEM)are currently the most accurate and freely available DEM data.However,an accuracy assessment specifically targeted at DEMs over low elevation coastal plains is lacking.The present study focuses on these areas to assess the vertical accuracy of SRTM and ASTER GDEM using Ice,Cloud,and land Elevation Satellite,Geoscience Laser Altimeter System(ICESat/GLAS)and Real Time Kinematic(RTK)Global Positioning System(GPS)field survey data.The findings show that DEM accuracy is much better than the mission specifications over coastal plains.In addition,optical remote sensing image analysis further reveals the relationship between DEM vertical accuracy and land cover in these areas.This study provides a systematic approach to assess the accuracy of DEMs in coastal zones,and the results highlight the limitations and potential of these DEMs in coastal applications.展开更多
Suzhou is one of China's most developed regions, located in the eastern part of the Yangtze Delta. Due to its location and river features, it may at a high risk of flood under the climate change background in the fut...Suzhou is one of China's most developed regions, located in the eastern part of the Yangtze Delta. Due to its location and river features, it may at a high risk of flood under the climate change background in the future. In order to investigate the flood response to the extreme scenario in this region, 1-D hydrodynamic model with real-time operations of sluices and pumps is established. The rain-runoff processes of the urban and rural areas are simulated by two lumped hydrologic models, respectively. Indicators for a quantitative assessment of the flood severity in this region are proposed. The results indicate that the existing flood control system could prevent the Suzhou Downtown from inundation in the future. The difficulty of draining the Taihu Lake floods should be given attention to avoid the flood hazard. The modelling approach based on the in-bank model and the evaluation parameters could be effective for the flood severity estimation in the plain river network catchment. The insights from this study of the possible future extreme flood events may assist the policy making and the flood control planning.展开更多
The area of the Huaihe river flood control model is 4000m2. A computer system is employed to control models and collect experimental data.It can control 7 inflows which simulating 9 typical years flood process, a tail...The area of the Huaihe river flood control model is 4000m2. A computer system is employed to control models and collect experimental data.It can control 7 inflows which simulating 9 typical years flood process, a tail water level, 6 sluices, 11 outlets of breaking dike, and collect the water level of 37 points and velocity of 32 points.After running long time,the system has ben proved that it possesses steady character and exact accuracy.It is essential precondition for the experimental study of the Huaibe river find control model.展开更多
When linear regressive models such as AR or ARMA model are used for fitting and predicting climatic time series,results are often not sufficiently good because nonlinear variations in the time series.In this paper, a ...When linear regressive models such as AR or ARMA model are used for fitting and predicting climatic time series,results are often not sufficiently good because nonlinear variations in the time series.In this paper, a nonlinear self-exciting threshold autoregressive(SETAR)model is applied to modeling and predicting the time series of flood/drought runs in Beijing,which were derived from the graded historical flood/drought records in the last 511 years(1470—1980).The results show that the modeling and predicting with the SETAR model are much better than that of the AR model.The latter can predict the flood/drought runs with a length only less than two years,while the formal can predict more than three-year length runs.This may be due to the fact that the SETAR model can renew the model according to the run-turning points in the process of predic- tion,though the time series is nonstationary.展开更多
Stimulated by the recent USEPA's green stormwater infrastructure (GSI) guidance and policies, GS1 systems have been widely implemented in the municipal area to control the combined sewer overflows (CSOs), also kn...Stimulated by the recent USEPA's green stormwater infrastructure (GSI) guidance and policies, GS1 systems have been widely implemented in the municipal area to control the combined sewer overflows (CSOs), also known as low impact development (LID) approaches. To quantitatively evaluate the performance of GSI systems on CSO and urban flooding control, USEPA-Stormwater Management Model (SWMM) model was adopted in this study to simulate the behaviors of GSI systems in a well- developed urban drainage area, PSW45, under different circumstances. The impact of different percentages of stormwater runoff transported from impervious surfaces to the GSI systems on CSO and urban flooding control has also been investigated. Results show that with current buildup, GSI systems in PSW45 have the best performance for low intensity and short duration events on both volume and peak flow reductions, and have the worst pertbrmance tor high intensity and long durataon events. Since the low intensity and short duration events are dominant from a long-term perspective, utilizing GSI systems is considered as an effective measure of CSO control to meet the long-term controlstrategy for PSW45 watershed. However, GSI systems are not suitable for the flooding control purpose in PSW45 due to the high occurrence possibility of urban flooding during or after high intensity events where GSI systems have relatively poor performance no matter for a short or long duration event,展开更多
基金supported by the National Natural Science Foundation of China(Grants No.42001025 and 42001014)the Belt and Road Special Foundation of the State Key Laboratory of Hydrology-Water Resources and Hydraulic Engineering(Grant No.2021491211)the Natural Science Foundation of Ningbo Municipality(Grant No.2023J133).
文摘Suzhou City,located in the Yangtze River Delta in China,is prone to flooding due to a complex combination of natural factors,including its monsoon climate,low elevation,and tidally influenced position,as well as intensive human activities.The Large Encirclement Flood Control Project(LEFCP)was launched to cope with serious floods in the urban area.This project changed the spatiotemporal pattern of flood processes and caused spatial diversion of floods from the urban area to the outskirts of the city.Therefore,this study developed a distributed flood simulation model in order to understand this transition of flood processes.The results revealed that the LEFCP effectively protected the urban areas from floods,but the present scheduling schemes resulted in the spatial diversion of floods to the outskirts of the city.With rainstorm frequencies of 10.0%to 0.5%,the water level differences between two representative water level stations(Miduqiao(MDQ)and Fengqiao(FQ))located inside and outside the LEFCP area,ranged from 0.75 m to 0.24 m and from 1.80 m to 1.58 m,respectively.In addition,the flood safety margin at MDQ and the duration with the water level exceeding the warning water level at FQ ranged from 0.95 m to 0.43 m and from 4 h to 22 h,respectively.Rational scheduling schemes for the hydraulic facilities of the LEFCP in extreme precipitation cases were developed ac-cording to food simulations under seven scheduling scenarios.This helps to regulate the spatial flood diversion caused by the LEFCP during extreme precipitation.
文摘This paper introduces the results of selecting and breeding a micro-organism, Strain I, and its core model experiment investigation for microbial enhanced oil recovery (MEOR). Strain I was separated from the formation water of the Dagang oil field, with analytical results showing that Strain I is a gram-positive bacillus. A further study revealed that this strain has an excellent tolerance of environmental stresses: It can survive in conditions of 70℃, 30 wt% salinity and pH3.5-9.4. Strain I can metabolize biosurfactants that could increase the oil recovery ratio, use crude oil as the single carbon source, and decompose long-chain paraffin with a large molecular weight into short-chain paraffin with a small molecular weight. The core model experiment shows that Strain I enhances oil recovery well. Using 2 vol% of the fermentation solution of Strain I to displace the crude oil in the synthetic plastic bonding core could increase the recovery ratio by 21.6%.
文摘The flood hazard management is one of the major challenges in the floodplain regions worldwide.With the rise in population growth and the spread of infrastructural development,the level of risk has increased over time.Therefore,the prediction of flood susceptible area is a key challenge for the adoption of management plans.Flood susceptibility modeling is technically a common work,but it is still a very tough job to validate flood susceptible models in a very rigorous and scientific manner.Therefore,the present work in the Atreyee River Basin of India and Bangladesh was planned to establish artificial neural network(ANN),radial basis function(RBF),random forest(RF)and their ensemble-based flood susceptibility models.The flood susceptible models were constructed based on nine flood conditioning parameters.The flood susceptibility models were validated in a conventional way using the receiver operating curve(ROC).To validate the flood-susceptible models,a two dimensional(2D)hydraulic flood simulation model was developed.Also,the index of flood vulnerability model was developed and applied for validating the flood susceptible models,which was a very unique way to validate the predictive models.Friedman test and Wilcoxon Signed rank test were employed to compare the generated flood susceptible models.Results showed that 11.95%-12.99%of the entire basin area(10188.4 km^(2))comes under very high flood-susceptible zones.Accuracy evaluation results have shown that the performance of ensemble flood susceptible models outperforms other standalone machine learning models.The flood simulation model and IFV model were also spatially adjusted with the flood susceptibility models.Therefore,the present study recommended for the ensemble flood susceptibility prediction and IFV based validation along with conventional ways.
文摘Flooding is a common natural disaster that causes enormous economic, social, and human losses. Of various flood routing methods, the dynamic wave model is one of the best approaches for the prediction of the characteristics of floods during their propagations in natural rivers because all of the terms of the momentum equation are considered in the model. However, no significant research has been conducted on how the model sensitivity affects the accuracy of the downstream hydrograph. In this study, a comprehensive analysis of the input parameters 9f the dynamic wave model was performed through field applications in natural rivers and routing experiments in artificial channels using the graphical multi-parametric sensitivity analysis (GMPSA). The results indicate that the effects of input parameter errors on the output results are more significant in special situations, such as lower values of Manning's roughness coefficient and/or a steeper bed slope on the characteristics of a design hydrograph, larger values of the skewness factor and/or time to peak on the channel characteristics, larger values of Manning's roughness coefficient and/or the bed slope on the space step, and lower values of Manning's roughness coefficient and/or a steeper bed slope on the time step and weighting factor.
基金supported by the National Natural Science Foundation of China (Grant Nos. 41130639, 51179045, 41201028)the Nonprofit Industry Financial Program of MWR of China (201501022)
文摘Intense human activities have greatly changed the flood generation conditions in most areas of the world, and have destroyed the consistency in the annual flood peak and volume series. For design flood estimation, coaxial correlation diagram and conceptual hydrological model are two frequently used tools to adjust and reconstruct the flood series under human disturbance. This study took a typical mountain catchment of the Haihe River Basin as an example to investigate the effects of human activities on flood regime and to compare and assess the two adjustment methods. The main purpose is to construct a conceptual hydrological model which can incorporate the effects of human activities. The results show that the coaxial correlation diagram is simple and widely-used, but can only adjust the time series of total flood volumes. Therefore, it is only applicable under certain conditions(e.g. There is a strong link between the flood peaks and volumes and the link is not significantly affected by human activities). The conceptual model is a powerful tool to adjust the time series of both flood peak flows and flood volumes over different durations provided that it is closely related to the catchment hydrological characteristics, specifically accounting for the effects of human activities, and incorporating expert knowledge when estimating or calibrating parameters. It is suggested that the two methods should be used together to cross check each other.
基金the financial support of the Important National Science and Technology Specific Projects of China (Grant No. 2011ZX05010-002)the Important Science and Technology Specific Projects of Petro China (Grant No. 2014E-3203)
文摘Immiscible water-alternating-gas(WAG) flooding is an EOR technique that has proven successful for water drive reservoirs due to its ability to improve displacement and sweep efficiency.Nevertheless,considering the complicated phase behavior and various multiphase flow characteristics,gas tends to break through early in production wells in heterogeneous formations because of overriding,fingering,and channeling,which may result in unfavorable recovery performance.On the basis of phase behavior studies,minimum miscibility pressure measurements,and immiscible WAG coreflood experiments,the cubic B-spline model(CBM) was employed to describe the three-phase relative permeability curve.Using the Levenberg-Marquardt algorithm to adjust the vector of unknown model parameters of the CBM sequentially,optimization of production performance including pressure drop,water cut,and the cumulative gas-oil ratio was performed.A novel numerical inversion method was established for estimation of the water-oil-gas relative permeability curve during the immiscible WAG process.Based on the quantitative characterization of major recovery mechanisms,the proposed method was validated by interpreting coreflood data of the immiscible WAG experiment.The proposed method is reliable and can meet engineering requirements.It provides a basic calculation theory for implicit estimation of oil-water-gas relative permeability curve.
基金Under the auspices of Knowledge Innovation Program of Chinese Academy of Sciences (No. KZCX3-SW-331)
文摘Land use/cover change (LUCC) is one of the main boundary conditions which influence many hydrologic processes. In view of the importance of Taihu Lake Watershed in China and the urgency of discovering the impacts of LUCC on storm runoff, two flood events under five land cover scenarios in the Xitiaoxi River Basin of the upstream of Taihu Lake watershed were simulated by distributed hydrologic modeling system HEC-HMS. The influences of each land cover on storm runoff were discussed. It was concluded that under the same rainstorm the ascending order of runoff coefficient and peak flow produced by the 5 different land covers were woodland, shrub, grassland, arable land, and built-up land; the descending order of swelling time were woodland, shrub, grassland, arable land, and built-up land. Scenario of built-up land was the first to reach peak flow, then arable land, grassland, shrub, and woodland. There were close relationships between the runoff coefficients produced by the 5 different land covers. The degrees of impacts on runoff coefficient of land cover change modes were sorted by descending: woodland to built-up land, shrub to built-up land, grassland to built-up land, arable land to built-up land, woodland to arable land, shrub to arable land, arable land to grassland, shrub to grassland, grassland to arable land, and woodland to shrub. Urbanization will contribute to flood disaster, while forestation will mitigate flood disaster.
基金supported by the Technological Fund Item of China University of Mining and Technology (Grant No. OF4533)the Key Research Project of the Water Resources Department of Henan Province
文摘This paper describes a flood routing method applied in an ungauged basin, utilizing the Muskingum model with variable parameters of wave travel time K and weight coefficient of discharge x based on the physical characteristics of the river reach and flood, including the reach slope, length, width, and flood discharge. Three formulas for estimating parameters of wide rectangular, triangular, and parabolic cross sections are proposed. The influence of the flood on channel flow routing parameters is taken into account. The HEC-HMS hydrological model and the geospatial hydrologic analysis module HEC-GeoHMS were used to extract channel or watershed characteristics and to divide sub-basins. In addition, the initial and constant-rate method, user synthetic unit hydrograph method, and exponential recession method were used to estimate runoff volumes, the direct runoff hydrograph, and the baseflow hydrograph, respectively. The Muskingum model with variable parameters was then applied in the Louzigou Basin in Henan Province of China, and of the results, the percentages of flood events with a relative error of peak discharge less than 20% and runoff volume less than 10% are both 100%. They also show that the percentages of flood events with coefficients of determination greater than 0.8 are 83.33%, 91.67%, and 87.5%, respectively, for rectangular, triangular, and parabolic cross sections in 24 flood events. Therefore, this method is applicable to ungauged basins.
基金The National Natural Science Foundation of China(No.51979040)。
文摘To verify the accuracy of weir and orifice formula and analyze the hydraulic characteristics of exchange flow in a manhole,a three-dimensional numerical model was proposed to assess the exchange flow rate between the surface and sewer pipe systems based on the real-world scale model.The hydrodynamic model is based on the three-dimensional Navier-Stokes equations including the standard k-εmodel for turbulence processes,and the volume of fluid(VOF)method for capturing the free surface.The results of the computational fluid dynamics(CFD)simulation are compared with the conventional overflow equations,showing that the weir and orifice formula is appropriate to determine the exchange flow rate between two systems in this specific study case.Streamlines and velocity contours at the center profile under both the inflow and surcharge conditions show that the exchange flow is directly related to the water level on the surface and the junction area between the manhole and right pipe.The results demonstrate the potential application of CFD in analyzing the interaction of urban flood flows,which can provide much clearer details of the interaction process.
文摘Flood risk analysis is the instrument for local officials to create a sound strategy and adaptation plans for the impacts of inundation due to heavy rains, climate change and sea level rise. Hence, cities with aging infrastructure are retrofitting their stormwater management systems to mitigate the impacts. However determining the most at risk areas and the options for corrections is more challenging. As a result, there is an urgent need to develop a screening tool to analyze watersheds and identify the most at-risk areas. High-quality, open source data and sophisticated spatial analysis techniques allow engineers to create innovative ways to conduct watershed wide inundation analysis. In th</span><span style="font-family:Verdana;">is study, the investigators developed </span></span></span></span><span></span><span style="font-family:Verdana;"><span style="font-family:Verdana;"><span style="font-family:Verdana;">a </span></span></span><span style="font-family:Verdana;"><span style="font-family:Verdana;"><span style="font-family:Verdana;">screening tool to identify at-ri</span></span></span><span style="font-family:Verdana;"><span style="font-family:Verdana;"><span style="font-family:Verdana;">sk properties by combining readily available data on topography, groundwater, surface water, tidal information for coastal communities, soils, open space, and rainfall data. Once the screening tool is developed, the means to identify and prioritize improvements to be funded with scarce capital funds is the next step.</span></span></span><span><span><span style="font-family:""> </span></span></span><span><span><span style="font-family:""><span style="font-family:Verdana;">A tool box of solutions was developed to address flood risk and vulnerability. Testing of the screening tool was conducted in Browa</span><span style="font-family:Verdana;">rd County, Florida and shows encouraging results. Comparison wit</span><span style="font-family:Verdana;">h FEMA Flood maps and repetitive loss mapping indicates that the process works in a coastal community. The framework appears to be viable across cities that may be inundated with water due to sea-level rise, rainfall, runoff upstream, and other natural events.
基金funded by the National Key Technology Research and Development Programthe Key Basic Research Program of the Ministry of Science and Technology of China (2012BAC19B07, 2013FY111400)the National Natural Science Foundation of China (41190084)
文摘Glacial outburst floods(GLOFs) in alpine regions tend to be relatively complicated, multi-stage catastrophes, capable of causing significant geomorphologic changes in channel surroundings and posing severe threats to infrastructure and the safety and livelihoods of human communities. GLOF disasters have been observed and potential hazards can be foreseen due to the newly formed glacial lakes or the expansion of existing ones in the Poiqu River Basin in Tibet, China. Here we presented a synthesis of GLOF-related studies including triggering mechanism(s), dam breach modeling, and flood routing simulation that have been employed to reconstruct or forecast GLOF hydrographs. We provided a framework for probability-based GLOFs simulation and hazard mapping in the Poiqu River Basin according to available knowledge. We also discussed the uncertainties and challenges in the model chains, which may form the basis for further research.
文摘Flooding has been one of the recurring occurred natural disasters that induce detrimental impacts on humans, property and environment. Frequent floods is a severe issue and a complex natural phenomenon in Pakistan with respect to population affected, environmental degradations, and socio-economic and property damages. The Super Flood, which hit Sindh in 2010, has turned out to be a wakeup call and has underlined the overwhelming challenge of natural calamities, as 2010 flood and the preceding flood in 2011 caused a huge loss to life, property and land use. These floods resulted in disruption of power, telecommunication, and water utilities in many districts of Pakistan, including 22 districts of Sindh. These floods call for risk assessment and hazard mapping of Lower Indus Basin flowing in the Sindh Province as such areas were also inundated in 2010 flood, which were not flooded in the past in this manner. This primary focus of this paper is the use of Multi-criteria Evaluation (MCE) methods in integration with the Geographical Information System (GIS) for the analysis of areas prone to flood. This research demonstrated how GIS tools can be used to produce map of flood vulnerable areas using MCE techniques. Slope, Aspect, Curvature, Soil, and Distance from Drainage, Land use, Precipitation, Flow Direction, and Flow Accumulation are taken as the causative factors for flooding in Lower Indus Basin. Analytical Hierarchy Process-AHP was used for the calculation of weights of all these factors. Finally, a flood hazard Map of Lower Indus Basin was generated which delineates the flood prone areas in the Sindh province along Indus River Basin that could be inundated by potential flooding in future. It is aimed that flood hazard mapping and risk assessment using open source geographic information system can serve as a handy tool for the development of land-use strategies so as to decrease the impact from flooding.
基金supported by the National Natural Science Foundation of China (Grant Nos. 50809010, 50909012, 51079014)the National Key Technology R&D Program during the 11th Five-Year Plan Period of China (Grant No. 2007BAB28B01)
文摘This paper proposes a method of small reservoir flood detention modeling that utilizes data from the American land resources satellite Landsat TM/ETM+. Precipitation and potential evapotranspiration are taken as the control conditions in this method on the basis of basin terrain classification. The objective of this method is to solve the question of a small-scale water conservancy project’s influence on flood forecasting precision, which can be used in the basin with multitudinous small reservoirs in the upstream region and can help estimate non-runoff data for small reservoir runoff. Taking the 20060826 flood as an example, the flood detention quantity of 19 small reservoirs is modeled. The results show that the absolute error of the total flood detention quantity is 0.2×10 4 m 3 , and the relative error is 0.12%. The flood detention quantity of small reservoirs in the entire basin is then modeled using this method, and the primary flood forecasting model is adjusted. After adjustment, the precision is significantly improved, with the relative error decreasing from 31.8% to 10.1%.
基金the National Natural Science Foundation of China(NSFC)[grant number 41301486]Joint Program of CAS-TWAS CoE SDIM on Space Technology for Disaster Mitigation in Asia[grant number Y3YI2702KB]+1 种基金the National Basic Research Program of China[grant number 2009CB723906]the National Natural Science Foundation of China[grant number 41071274].
文摘The frequency of coastal flood damages is expected to increase significantly during the twenty-first century as sea level rises in the coastal floodplain.Coastal digital elevation model(DEM)data describing coastal topography are essential for assessing future flood-related damages and understanding the impacts of sea-level rise.The Shuttle Radar Topography Mission(SRTM)and Advanced Spaceborne Thermal Emission and Reflection Radiometer Global Digital Elevation Model(ASTER GDEM)are currently the most accurate and freely available DEM data.However,an accuracy assessment specifically targeted at DEMs over low elevation coastal plains is lacking.The present study focuses on these areas to assess the vertical accuracy of SRTM and ASTER GDEM using Ice,Cloud,and land Elevation Satellite,Geoscience Laser Altimeter System(ICESat/GLAS)and Real Time Kinematic(RTK)Global Positioning System(GPS)field survey data.The findings show that DEM accuracy is much better than the mission specifications over coastal plains.In addition,optical remote sensing image analysis further reveals the relationship between DEM vertical accuracy and land cover in these areas.This study provides a systematic approach to assess the accuracy of DEMs in coastal zones,and the results highlight the limitations and potential of these DEMs in coastal applications.
基金Project supported by the National Key Research and Development Program of China(Grant No.2017YFC0405600,2016YFC0401503)the Special Fund for Public Welfare of Water Resources Ministry(Grant No.201501007,201201017)the State Key Pro-gram of National Natural Science of China(Grant No.51239003)
文摘Suzhou is one of China's most developed regions, located in the eastern part of the Yangtze Delta. Due to its location and river features, it may at a high risk of flood under the climate change background in the future. In order to investigate the flood response to the extreme scenario in this region, 1-D hydrodynamic model with real-time operations of sluices and pumps is established. The rain-runoff processes of the urban and rural areas are simulated by two lumped hydrologic models, respectively. Indicators for a quantitative assessment of the flood severity in this region are proposed. The results indicate that the existing flood control system could prevent the Suzhou Downtown from inundation in the future. The difficulty of draining the Taihu Lake floods should be given attention to avoid the flood hazard. The modelling approach based on the in-bank model and the evaluation parameters could be effective for the flood severity estimation in the plain river network catchment. The insights from this study of the possible future extreme flood events may assist the policy making and the flood control planning.
文摘The area of the Huaihe river flood control model is 4000m2. A computer system is employed to control models and collect experimental data.It can control 7 inflows which simulating 9 typical years flood process, a tail water level, 6 sluices, 11 outlets of breaking dike, and collect the water level of 37 points and velocity of 32 points.After running long time,the system has ben proved that it possesses steady character and exact accuracy.It is essential precondition for the experimental study of the Huaibe river find control model.
文摘When linear regressive models such as AR or ARMA model are used for fitting and predicting climatic time series,results are often not sufficiently good because nonlinear variations in the time series.In this paper, a nonlinear self-exciting threshold autoregressive(SETAR)model is applied to modeling and predicting the time series of flood/drought runs in Beijing,which were derived from the graded historical flood/drought records in the last 511 years(1470—1980).The results show that the modeling and predicting with the SETAR model are much better than that of the AR model.The latter can predict the flood/drought runs with a length only less than two years,while the formal can predict more than three-year length runs.This may be due to the fact that the SETAR model can renew the model according to the run-turning points in the process of predic- tion,though the time series is nonstationary.
文摘Stimulated by the recent USEPA's green stormwater infrastructure (GSI) guidance and policies, GS1 systems have been widely implemented in the municipal area to control the combined sewer overflows (CSOs), also known as low impact development (LID) approaches. To quantitatively evaluate the performance of GSI systems on CSO and urban flooding control, USEPA-Stormwater Management Model (SWMM) model was adopted in this study to simulate the behaviors of GSI systems in a well- developed urban drainage area, PSW45, under different circumstances. The impact of different percentages of stormwater runoff transported from impervious surfaces to the GSI systems on CSO and urban flooding control has also been investigated. Results show that with current buildup, GSI systems in PSW45 have the best performance for low intensity and short duration events on both volume and peak flow reductions, and have the worst pertbrmance tor high intensity and long durataon events. Since the low intensity and short duration events are dominant from a long-term perspective, utilizing GSI systems is considered as an effective measure of CSO control to meet the long-term controlstrategy for PSW45 watershed. However, GSI systems are not suitable for the flooding control purpose in PSW45 due to the high occurrence possibility of urban flooding during or after high intensity events where GSI systems have relatively poor performance no matter for a short or long duration event,