Abiotic stress,including flooding,seriously affects the normal growth and development of plants.Mulberry(Morus alba),a species known for its flood resistance,is cultivated worldwide for economic purposes.The transcrip...Abiotic stress,including flooding,seriously affects the normal growth and development of plants.Mulberry(Morus alba),a species known for its flood resistance,is cultivated worldwide for economic purposes.The transcriptomic analysis has identified numerous differentially expressed genes(DEGs)involved in submergence tolerance in mulberry plants.However,a comprehensive analyses of metabolite types and changes under flooding stress in mulberry remain unreported.A non-targeted metabolomic analysis utilizing liquid chromatographytandem mass spectrometry(LC-MS/MS)was conducted to further investigate the effects of flooding stress on mulberry.A total of 1,169 metabolites were identified,with 331 differentially accumulated metabolites(DAMs)exhibiting up-regulation in response to flooding stress and 314 displaying down-regulation.Pathway enrichment analysis identified significant modifications in many metabolic pathways due to flooding stress,including amino acid biosynthesis and metabolism and flavonoid biosynthesis.DAMs and DEGs are significantly enriched in the Kyoto Encyclopedia of Genes and Genomes(KEGG)pathways for amino acid,phenylpropanoid and flavonoid synthesis.Furthermore,metabolites such as methyl jasmonate,sucrose,and D-mannose 6-phosphate accumulated in mulberry leaves post-flooding stress.Therefore,genes and metabolites associated with these KEGG pathways are likely to exert a significant influence on mulberry flood tolerance.This study makes a substantial contribution to the comprehension of the underlying mechanisms implicated in the adaptation of mulberry plants to submergence.展开更多
[Objectives]This study was conducted to explore how to improve the waterlogging tolerance of red-seed watermelon through grafting,to provide a theoretical basis for its cultivation in rainy season.[Methods]The effects...[Objectives]This study was conducted to explore how to improve the waterlogging tolerance of red-seed watermelon through grafting,to provide a theoretical basis for its cultivation in rainy season.[Methods]The effects of flooding stress on the growth and root physiological and biochemical characteristics of grafted and own-rooted red-seed watermelon seedlings were studied using Luffa as rootstocks and"Zhongxin 1"red-seed watermelon as scions.[Results]After flooding stress,the biomass and root activity of grafted seedlings of red-seed watermelon were significantly higher than those of own-rooted seedlings.With the prolongation of flooding stress time,the soluble sugar and proline content showed a trend of first increasing and then decreasing,and the grafted seedlings had a larger increase and a smaller decrease,and were always significantly higher than own-rooted seedlings in the same period.The content of malondialdehyde in the root system of grafted seedlings increased first and then decreased,while it continued to increase in own-rooted seedlings,and the increase in own-rooted seedlings was significantly greater than that in grafted seedlings during the same period.[Conclusions]Grafting on Luffa rootstocks could improve waterlogging tolerance of red-seed watermelon.展开更多
The physiological responses of 2-year-old seedlings of Nuttall's oak (Quercus nuttallii) and Southern red oak (Q.falcata) with two treatments i.e., deep-drowning and shallow-drowning, were studied. Taxodium disti...The physiological responses of 2-year-old seedlings of Nuttall's oak (Quercus nuttallii) and Southern red oak (Q.falcata) with two treatments i.e., deep-drowning and shallow-drowning, were studied. Taxodium distichum was selected as a control. The survival rates of seedlings were calculated, the photosynthetic indices were detected by Licor-6400 photosynthetic system instrument, and the root activities of seedlings were tested by the method of triphenyltetrazolium chloride (TTC). Results showed that: 1) By experiencing flooding for 76 d and recovering for 60 d after water was drained off, all seedlings survived under the shallow-drowning treatment. None of Q. falcata seedlings died in the deep-drowning treatment until the 49th day. The survival rate of Q. falcata in the deep-drowning treatment was 30%. 2) Within 61 d of waterlogging treatments, the net photosynthetic rate (Pn), stomatal conductance (gs) and transpiration rate (Tr) showed a tendency of declining, but intercellular concentration of CO2 (Ci) increased. With the prolongation of flooding stress, the extents of variation for all indices under deep-drowning treatment were larger than those under the shallow-drowning treatment. The variation of Q. falcata in flooding stress was larger than that of Q. nuttallii. 3) The root vigor and alcohol dehydrogenase (ADH) activities were detected at the 61st day in flooding stress. Waterlogging obviously inhibited root activities. Shallow-drowning made root vigor of Q. nuttallii decreased by 11.7%, and for Q. falcata, by 51.88%. Shallow-drowning treatment had no remarkable effects on ADH activities of seedlings, but deep-drowning increased those of Q. nuttallii seedlings by 227.24%, and decreased those of Q. falcata seedlings by 59.22% in the meantime. We conclude that Q. nuttallii had a stronger waterlogging resistance than Q. falcata, but weaker than T. distichum.展开更多
Flooding is one of the most hazardous natural disasters and a major stress constraint to rice production throughout the world,which results in huge economic loss.Approximately one-fourth of the global rice crops(appro...Flooding is one of the most hazardous natural disasters and a major stress constraint to rice production throughout the world,which results in huge economic loss.Approximately one-fourth of the global rice crops(approximately 40 million hectares)are grown in rainfed lowland plots that are prone to seasonal flooding.A great progress has been made during last two decades in our understanding of the mechanisms involved in adaptation and tolerance to flooding/submergence in rice.In this review,we summarized the physiological and molecular mechanisms that contribute to tolerance of flooding/submergence in rice.We also covered various features of flooding stress with special reference to rice plants,viz.different types of flooding stress,environmental characterisation of flood water,impact of flooding stress on rice plant and their morphological,physiological and metabolic responses under flooding.A brief discussion on the tolerance mechanism in rice exhibited to different types of flooding will be focused for the future crop improvement programme for development of flooding tolerant rice variety.展开更多
Redwood trees(Sequoioideae),including Metasequoia glyptostroboides(dawn redwood),Sequoiadendron giganteum(giant sequoia),and Sequoia sempervirens(coast redwood),are threatened and widely recognized iconic tree species...Redwood trees(Sequoioideae),including Metasequoia glyptostroboides(dawn redwood),Sequoiadendron giganteum(giant sequoia),and Sequoia sempervirens(coast redwood),are threatened and widely recognized iconic tree species.Genomic resources for redwood trees could provide clues to their evolutionary relationships.Here,we report the 8-Gb reference genome of M.glyptostroboides and a comparative analysis with two related species.More than 62%of the M.glyptostroboides genome is composed of repetitive sequences.Clade-specific bursts of long terminal repeat retrotransposons may have contributed to genomic differentiation in the three species.The chromosomal synteny between M.glyptostroboides and S.giganteum is extremely high,whereas there has been significant chromosome reorganization in S.sempervirens.Phylogenetic analysis of marker genes indicates that S.sempervirens is an autopolyploid,and more than 48%of the gene trees are incongruent with the species tree.Results of multiple analyses suggest that incomplete lineage sorting(ILS)rather than hybridization explains the inconsistent phylogeny,indicating that genetic variation among redwoods may be due to random retention of polymorphisms in ancestral populations.Functional analysis of ortholog groups indicates that gene families of ion channels,tannin biosynthesis enzymes,and transcription factors for meristem maintenance have expanded in S.giganteum and S.sempervirens,which is consistent with their extreme height.As a wetland-tolerant species,M.glyptostroboides shows a transcriptional response to flooding stress that is conserved with that of analyzed angiosperm species.Our study offers insights into redwood evolution and adaptation and provides genomic resources to aid in their conservation and management.展开更多
基金The funding for this research was provided by the General Program of Chongqing Natural Science Foundation(No.cstc2020jcyj-msxmX0073)Scientific and Technological Research Program of Chongqing Municipal Education Commission(Nos.KJQN202001209,KJZD-K202301206)Chongqing Graduate Research Innovation Project(CYS22698).
文摘Abiotic stress,including flooding,seriously affects the normal growth and development of plants.Mulberry(Morus alba),a species known for its flood resistance,is cultivated worldwide for economic purposes.The transcriptomic analysis has identified numerous differentially expressed genes(DEGs)involved in submergence tolerance in mulberry plants.However,a comprehensive analyses of metabolite types and changes under flooding stress in mulberry remain unreported.A non-targeted metabolomic analysis utilizing liquid chromatographytandem mass spectrometry(LC-MS/MS)was conducted to further investigate the effects of flooding stress on mulberry.A total of 1,169 metabolites were identified,with 331 differentially accumulated metabolites(DAMs)exhibiting up-regulation in response to flooding stress and 314 displaying down-regulation.Pathway enrichment analysis identified significant modifications in many metabolic pathways due to flooding stress,including amino acid biosynthesis and metabolism and flavonoid biosynthesis.DAMs and DEGs are significantly enriched in the Kyoto Encyclopedia of Genes and Genomes(KEGG)pathways for amino acid,phenylpropanoid and flavonoid synthesis.Furthermore,metabolites such as methyl jasmonate,sucrose,and D-mannose 6-phosphate accumulated in mulberry leaves post-flooding stress.Therefore,genes and metabolites associated with these KEGG pathways are likely to exert a significant influence on mulberry flood tolerance.This study makes a substantial contribution to the comprehension of the underlying mechanisms implicated in the adaptation of mulberry plants to submergence.
基金Supported by"Watermelon and Muskmelon Germplasm Innovation and Genetic Improvement"Post of Guangxi Bagui Scholars(2016A11)。
文摘[Objectives]This study was conducted to explore how to improve the waterlogging tolerance of red-seed watermelon through grafting,to provide a theoretical basis for its cultivation in rainy season.[Methods]The effects of flooding stress on the growth and root physiological and biochemical characteristics of grafted and own-rooted red-seed watermelon seedlings were studied using Luffa as rootstocks and"Zhongxin 1"red-seed watermelon as scions.[Results]After flooding stress,the biomass and root activity of grafted seedlings of red-seed watermelon were significantly higher than those of own-rooted seedlings.With the prolongation of flooding stress time,the soluble sugar and proline content showed a trend of first increasing and then decreasing,and the grafted seedlings had a larger increase and a smaller decrease,and were always significantly higher than own-rooted seedlings in the same period.The content of malondialdehyde in the root system of grafted seedlings increased first and then decreased,while it continued to increase in own-rooted seedlings,and the increase in own-rooted seedlings was significantly greater than that in grafted seedlings during the same period.[Conclusions]Grafting on Luffa rootstocks could improve waterlogging tolerance of red-seed watermelon.
基金supported by the National Project of Science and Technology for the 11th Five-Year Plan (Grant No. 2006BAD03A1702-02).
文摘The physiological responses of 2-year-old seedlings of Nuttall's oak (Quercus nuttallii) and Southern red oak (Q.falcata) with two treatments i.e., deep-drowning and shallow-drowning, were studied. Taxodium distichum was selected as a control. The survival rates of seedlings were calculated, the photosynthetic indices were detected by Licor-6400 photosynthetic system instrument, and the root activities of seedlings were tested by the method of triphenyltetrazolium chloride (TTC). Results showed that: 1) By experiencing flooding for 76 d and recovering for 60 d after water was drained off, all seedlings survived under the shallow-drowning treatment. None of Q. falcata seedlings died in the deep-drowning treatment until the 49th day. The survival rate of Q. falcata in the deep-drowning treatment was 30%. 2) Within 61 d of waterlogging treatments, the net photosynthetic rate (Pn), stomatal conductance (gs) and transpiration rate (Tr) showed a tendency of declining, but intercellular concentration of CO2 (Ci) increased. With the prolongation of flooding stress, the extents of variation for all indices under deep-drowning treatment were larger than those under the shallow-drowning treatment. The variation of Q. falcata in flooding stress was larger than that of Q. nuttallii. 3) The root vigor and alcohol dehydrogenase (ADH) activities were detected at the 61st day in flooding stress. Waterlogging obviously inhibited root activities. Shallow-drowning made root vigor of Q. nuttallii decreased by 11.7%, and for Q. falcata, by 51.88%. Shallow-drowning treatment had no remarkable effects on ADH activities of seedlings, but deep-drowning increased those of Q. nuttallii seedlings by 227.24%, and decreased those of Q. falcata seedlings by 59.22% in the meantime. We conclude that Q. nuttallii had a stronger waterlogging resistance than Q. falcata, but weaker than T. distichum.
文摘Flooding is one of the most hazardous natural disasters and a major stress constraint to rice production throughout the world,which results in huge economic loss.Approximately one-fourth of the global rice crops(approximately 40 million hectares)are grown in rainfed lowland plots that are prone to seasonal flooding.A great progress has been made during last two decades in our understanding of the mechanisms involved in adaptation and tolerance to flooding/submergence in rice.In this review,we summarized the physiological and molecular mechanisms that contribute to tolerance of flooding/submergence in rice.We also covered various features of flooding stress with special reference to rice plants,viz.different types of flooding stress,environmental characterisation of flood water,impact of flooding stress on rice plant and their morphological,physiological and metabolic responses under flooding.A brief discussion on the tolerance mechanism in rice exhibited to different types of flooding will be focused for the future crop improvement programme for development of flooding tolerant rice variety.
基金supported by the National Key Research and Development Program of China(2017YFD0600701).
文摘Redwood trees(Sequoioideae),including Metasequoia glyptostroboides(dawn redwood),Sequoiadendron giganteum(giant sequoia),and Sequoia sempervirens(coast redwood),are threatened and widely recognized iconic tree species.Genomic resources for redwood trees could provide clues to their evolutionary relationships.Here,we report the 8-Gb reference genome of M.glyptostroboides and a comparative analysis with two related species.More than 62%of the M.glyptostroboides genome is composed of repetitive sequences.Clade-specific bursts of long terminal repeat retrotransposons may have contributed to genomic differentiation in the three species.The chromosomal synteny between M.glyptostroboides and S.giganteum is extremely high,whereas there has been significant chromosome reorganization in S.sempervirens.Phylogenetic analysis of marker genes indicates that S.sempervirens is an autopolyploid,and more than 48%of the gene trees are incongruent with the species tree.Results of multiple analyses suggest that incomplete lineage sorting(ILS)rather than hybridization explains the inconsistent phylogeny,indicating that genetic variation among redwoods may be due to random retention of polymorphisms in ancestral populations.Functional analysis of ortholog groups indicates that gene families of ion channels,tannin biosynthesis enzymes,and transcription factors for meristem maintenance have expanded in S.giganteum and S.sempervirens,which is consistent with their extreme height.As a wetland-tolerant species,M.glyptostroboides shows a transcriptional response to flooding stress that is conserved with that of analyzed angiosperm species.Our study offers insights into redwood evolution and adaptation and provides genomic resources to aid in their conservation and management.