Floods are essential for the regeneration and growth of floodplain forests in arid and semiarid regions. However, river flows, and especially flood flows, have decreased greatly with the increase of water diversion fr...Floods are essential for the regeneration and growth of floodplain forests in arid and semiarid regions. However, river flows, and especially flood flows, have decreased greatly with the increase of water diversion from rivers and/or reservoir regulation, resulting in severe deterioration of floodplain ecosystems. Estimation of the flood stage that will inundate the floodplain forest is necessary for the forest's restoration or protection. To balance water use for economic purposes and floodplain forest protection, the inundated forest width method is proposed for estimating the minimum flood stage for floodplain forests from the inundated forest width-stage curve. The minimum flood stage is defined as the breakpoint of the inundated forest width-stage curve, and is determined directly or analytically from the curve. For the analytical approach, the problem under consideration is described by a multi-objective optimization model, which can be solved by the ideal point method. Then, the flood flow at the minimum flood stage (minimum flood flow), which is useful for flow regulation, can be calculated from the stage-discharge curve. In order to protect the forest in a river floodplain in a semiarid area in Xinjiang subject to reservoir regulation upstream, the proposed method was used to determine the minimum flood stage and flow for the forest. Field survey of hydrology, topography, and forest distribution was carried out at typical cross sections in the floodplain. Based on the survey results, minimum flood flows for six typical cross sections were estimated to be between 306 m3/s and 393 m3/s. Their maximum, 393 m3/s, was considered the minimum flood flow for the study river reach. This provides an appropriate flood flow for the protection of floodplain forest and can be used in the regulation of the upstream reservoir.展开更多
River-floodplain ecosystems are in delicate balance and are impacted by even minor changes in water availability. In this study, we surveyed fish assemblages and investigated environmental and landscape parameters in ...River-floodplain ecosystems are in delicate balance and are impacted by even minor changes in water availability. In this study, we surveyed fish assemblages and investigated environmental and landscape parameters in a total of 135 floodplain waterbodies (rivers, diversion canals, ponds, irrigation ditches, paddy fields, and wetlands) in the Chao Phraya River Basin in rainy (September 2014) and dry (March 2015) seasons. Factors affecting fish species richness in each type of waterbody were analyzed using generalized linear mixed models. Floodplain area around each surveyed waterbody was a major factor determining fish species richness in rivers, diversion canals, and ponds in the region. The contribution of floodplain area was equivalent to that of hydrology (current velocity, water depth) and water quality (dissolved oxygen, turbidity) in the waterbodies. The population of juvenile fishes was increased in temporarily connected floodplain waterbodies to main rivers compared with isolated waterbodies, and fluvial and lacustrine fishes were observed in the temporary inundated floodplain waterbodies during the rainy season. The high dependence of fish species richness on floodplain area in the region appeared to be a result of the use of inundated floodplains by fish species to forage and breed. Our results highlight the impact of flood control measures that reduces floodplain area. These measures must be reviewed to ensure the conservation of fish biodiversity in the Chao Phraya River Basin, one of the world’s most threatened floodplain systems.展开更多
Kaynasli District in the western Black Sea region of Turkey has long been vulnerable to frequent flood damage due to the establishment of settlements within and around stream channels without regard to fluctuating pea...Kaynasli District in the western Black Sea region of Turkey has long been vulnerable to frequent flood damage due to the establishment of settlements within and around stream channels without regard to fluctuating peakstreamflow frequencies. The aim of this research was to determine the measures needed to protect the towns and villages from this type of damage. Daily total precipitation data for 1975–2010 were analysed, and rainfall-runoff models developed to estimate the potential yearly maximum discharge from each stream of sub-watersheds dominated by forests and/or agriculture. This was then calculated for different frequencies of the yearly maximum discharge. Flood analysis and mapping was modified via the one-dimensional Hydrologic Engineering CentersRiver Analysis System software to produce potential maximum discharge and geometric data for Kaynasli Creek. As the main creek of the sub-watershed, its crosssection was shown to be insufficient and incapable of containing the maximum discharge at the 100-year frequency presumed for the watershed, and subsequently was seen as having a high level of casualty risk. It was concluded that the one dimensional model could be useful, but 2D models were more suitable for these types of watersheds.展开更多
基金supported by the National Natural Science Foundation of China (Grant No.50879041)the New Century Excellent Talents in University (NCET) Program of the Ministry of Education of China (Grants No. 06-0059 and 07-0814)
文摘Floods are essential for the regeneration and growth of floodplain forests in arid and semiarid regions. However, river flows, and especially flood flows, have decreased greatly with the increase of water diversion from rivers and/or reservoir regulation, resulting in severe deterioration of floodplain ecosystems. Estimation of the flood stage that will inundate the floodplain forest is necessary for the forest's restoration or protection. To balance water use for economic purposes and floodplain forest protection, the inundated forest width method is proposed for estimating the minimum flood stage for floodplain forests from the inundated forest width-stage curve. The minimum flood stage is defined as the breakpoint of the inundated forest width-stage curve, and is determined directly or analytically from the curve. For the analytical approach, the problem under consideration is described by a multi-objective optimization model, which can be solved by the ideal point method. Then, the flood flow at the minimum flood stage (minimum flood flow), which is useful for flow regulation, can be calculated from the stage-discharge curve. In order to protect the forest in a river floodplain in a semiarid area in Xinjiang subject to reservoir regulation upstream, the proposed method was used to determine the minimum flood stage and flow for the forest. Field survey of hydrology, topography, and forest distribution was carried out at typical cross sections in the floodplain. Based on the survey results, minimum flood flows for six typical cross sections were estimated to be between 306 m3/s and 393 m3/s. Their maximum, 393 m3/s, was considered the minimum flood flow for the study river reach. This provides an appropriate flood flow for the protection of floodplain forest and can be used in the regulation of the upstream reservoir.
文摘River-floodplain ecosystems are in delicate balance and are impacted by even minor changes in water availability. In this study, we surveyed fish assemblages and investigated environmental and landscape parameters in a total of 135 floodplain waterbodies (rivers, diversion canals, ponds, irrigation ditches, paddy fields, and wetlands) in the Chao Phraya River Basin in rainy (September 2014) and dry (March 2015) seasons. Factors affecting fish species richness in each type of waterbody were analyzed using generalized linear mixed models. Floodplain area around each surveyed waterbody was a major factor determining fish species richness in rivers, diversion canals, and ponds in the region. The contribution of floodplain area was equivalent to that of hydrology (current velocity, water depth) and water quality (dissolved oxygen, turbidity) in the waterbodies. The population of juvenile fishes was increased in temporarily connected floodplain waterbodies to main rivers compared with isolated waterbodies, and fluvial and lacustrine fishes were observed in the temporary inundated floodplain waterbodies during the rainy season. The high dependence of fish species richness on floodplain area in the region appeared to be a result of the use of inundated floodplains by fish species to forage and breed. Our results highlight the impact of flood control measures that reduces floodplain area. These measures must be reviewed to ensure the conservation of fish biodiversity in the Chao Phraya River Basin, one of the world’s most threatened floodplain systems.
文摘Kaynasli District in the western Black Sea region of Turkey has long been vulnerable to frequent flood damage due to the establishment of settlements within and around stream channels without regard to fluctuating peakstreamflow frequencies. The aim of this research was to determine the measures needed to protect the towns and villages from this type of damage. Daily total precipitation data for 1975–2010 were analysed, and rainfall-runoff models developed to estimate the potential yearly maximum discharge from each stream of sub-watersheds dominated by forests and/or agriculture. This was then calculated for different frequencies of the yearly maximum discharge. Flood analysis and mapping was modified via the one-dimensional Hydrologic Engineering CentersRiver Analysis System software to produce potential maximum discharge and geometric data for Kaynasli Creek. As the main creek of the sub-watershed, its crosssection was shown to be insufficient and incapable of containing the maximum discharge at the 100-year frequency presumed for the watershed, and subsequently was seen as having a high level of casualty risk. It was concluded that the one dimensional model could be useful, but 2D models were more suitable for these types of watersheds.