期刊文献+
共找到5篇文章
< 1 >
每页显示 20 50 100
A probe into“mining technique in the condition of floor failure”for coal seam above longwall goafs 被引量:4
1
作者 冯国瑞 王鲜霞 康立勋 《Journal of Coal Science & Engineering(China)》 2008年第1期19-23,共5页
Targeting at the coal seam with useful value discarded above goafs,attempted to explore the feasibility of'mining technique in the condition of floor failure' from theoretical point of view,and predicted.It in... Targeting at the coal seam with useful value discarded above goafs,attempted to explore the feasibility of'mining technique in the condition of floor failure' from theoretical point of view,and predicted.It indicated that mining technique in the condition of floor failure used above Longwall Goafs in Baijiazhuang Mining is totally feasible.At law,the deformation of the floor in the mining technique by means of probability-integral method.And it is discov- ered that deformed basin can emerge in the footwall of No.6 coal seam and its maximum subsidence was possibly 1 633 mm or so and its maximum positive curvature is 61.74/10^(-3). At last,it therefore suggests appropriate ground pressure control measures as strengthening observation of ground pressure and adopting false slope for exploitation and strengthening support for reasonable push and slide based on the adverse ground pressure behaviors possibly occurring in the mining technique.This serves to gather data and lay sturdy founda- tion for further probe into the mining technique,and offers theoretical and technical grounds for concrete implementation of the mining technique. 展开更多
关键词 mining technique in the condition of floor failure Iongwall goafs probability-integral method
下载PDF
Analysis of floor failure depth by using electric profiling method in longwall gangue backfill mining
2
作者 Sheng-Li YANG Xin-Pin DING +2 位作者 Xin WANG Xiao-Meng LI Li LIN 《Journal of Coal Science & Engineering(China)》 2013年第3期282-289,共8页
In underground mining, floor failure depth accompanying mining phases usually results from changes in the advance abutment pressure in the coal mass, and changes in stress redistribution in the areas that have already... In underground mining, floor failure depth accompanying mining phases usually results from changes in the advance abutment pressure in the coal mass, and changes in stress redistribution in the areas that have already been mined. Although a variety of techniques have been applied to determine the failure depth, and a number of studies have provided the evidence for the decreasing of failure depth under backfilling, these methods and interactions have not been unequivocally identified. Based on the premise of one possible relation between the failure depth and filling body, which is that the filling materials (gangue) in the gob area can not only restrain the movement of the overlying strata effectively, but also can help to decrease failure depth of the floor in the coal mine. The failure depth in a specific longwall gangue backfilling mine was measured using the mine electricity profiling method. These electrode cables are arranged in a crossheading order to measure the depth and position of the destroyed floor using the DC method. After this, several different methods were used to interpret the recorded data from the field study for gaining failure depth, and the results were compared to the theoretical calculation values. And finally, the authors analyzed the reasons for failure depth form values recorded not indicating a large decrease trend when compared to the theoretical calculation. In this area, it is found that: ① The results using the mine electricity profiling method turns out to be robust and can be used in predicting floor failure depth, and the horizontal position of the maximum destroyed in working face of longwall backfilling. The maximum destroyed position and failure space of the floor can be identified by using this method. ②There is a time-delay processing between the advance of the working face and the failure of floor strata in the mining processing. ③Additionally, based on the data collected from field measurements, which includes three different test electrode spacing approaches (single, double and triple electrode spacing), and the theoretical value from theoretical calculations. The premise mentioned above cannot be supported during the specific field test, and the role of the filling body in the mined area cannot decrease the floor failure depth effectively in comparison to the theory predictions. Basically, the failure depths in the two different methods have similar results and it is possible that there will not be a direct correlation between the filling body and failure depth. ④Although the failure depth cannot decrease effectiveness when using gangue backfilling in the field testing, due to gob gangue, filling materials being able to deliver the abutment pressure from the overburden in most cases, once they were compacted and rammed by the overburden pressure, it still can make the fracture of the gob area clog and be further consolidated. In this way, it is assumed that water-bursting accidents can be prevented effectively under backfill mining. For this reason, gangue backfilling may make a significant contribution to safety mining. 展开更多
关键词 gangue backfilling floor failure depth electricity profiling method gob area
下载PDF
Combined ANN prediction model for failure depth of coal seam floors 被引量:5
3
作者 WANG Lian-guo ZHANG Zhi-kang +4 位作者 LU Yin-long YANG Hong-bo YANG Sheng-qiang SUN Jian ZHANG Jin-yao 《Mining Science and Technology》 EI CAS 2009年第5期684-688,共5页
Failure depth of coal seam floors is one of the important considerations that must be kept in mind when mining is carried out above a confined aquifer. In order to study the factors that affect the failure depth of co... Failure depth of coal seam floors is one of the important considerations that must be kept in mind when mining is carried out above a confined aquifer. In order to study the factors that affect the failure depth of coal seam floors such as mining depth, coal seam pitch, mining thickness, workface length and faults, we propose a combined artificial neural networks (ANN) prediction model for failure depth of coal seam floors on the basis of existing engineering data by using genetic algorithms to train the ANN. A practical engineering application at the Taoyuan Coal Mine indicates that this method can effectively determine the network struc- ture and training parameters, with the predicted results agreeing with practical measurements. Therefore, this method can be applied to relevant engineering projects with satisfactory results. 展开更多
关键词 artificial neural networks (ANN) floor failure depth genetic algorithms PREDICTION
下载PDF
Application of the coal mine floor rating(CMFR)to assess the floor stability in a Central Appalachian Coal Mine
4
作者 Sena Cicek Ihsan Berk Tulu +2 位作者 Mark Van Dyke Ted Klemetti Joe Wickline 《International Journal of Mining Science and Technology》 SCIE EI CAS CSCD 2021年第1期83-89,共7页
Estimating the overall floor stability in a coal mine using deterministic methods which require complex engineering properties of floor strata is desirable,but generally it is impractical due to the difficulty of gath... Estimating the overall floor stability in a coal mine using deterministic methods which require complex engineering properties of floor strata is desirable,but generally it is impractical due to the difficulty of gathering essential input data.However,applying a quantitative methodology to describe floor quality with a single number provides a practical estimate for preliminary assessment of floor stability.The coal mine floor rating(CMFR)system,developed by the University of New South Wales(UNSW),is a rockmass classification system that provides an indicator for the competence of floor strata.The most significant components of the CMFR are uniaxial compressive strength and discontinuity intensity of floor strata.In addition to the competence of the floor,depth of cover and stress notch angle are input parameters used to assess the preliminary floor stability.In this study,CMFR methodology was applied to a Central Appalachian Coal Mine that intermittently experienced floor heave.Exploratory drill core data,overburden maps,and mine plans were utilized for the study.Additionally,qualitative data(failure/non-failure)on floor conditions of the mine entries near the core holes was collected and analyzed so that the floor quality and its relation to entry stability could be estimated by statistical methods.It was found that the current CMFR classification system is not directly applicable in assessing the floor stability of the Central Appalachian Coal Mine.In order to extend the applicability of the CMFR classification system,the methodology was modified.A calculation procedure of one of the CMFR classification system’s components,the horizontal stress rating(HSR),was changed and new parameters were added to the HSR. 展开更多
关键词 Rock mass classification Coal mine floor rating(CMFR) floor heave floor failure Buckling failure mechanism
下载PDF
Roadway failure and support in a coal seam underlying a previously mined coal seam 被引量:5
5
作者 Lu Yinlong Wang Lianguo Zhang Bei 《International Journal of Mining Science and Technology》 SCIE EI 2012年第5期619-624,共6页
The influence of an upper,mined coal seam on the stability of rock surrounding a roadway in a lower coal seam is examined.The technical problems of roadway control are discussed based on the geological conditions exis... The influence of an upper,mined coal seam on the stability of rock surrounding a roadway in a lower coal seam is examined.The technical problems of roadway control are discussed based on the geological conditions existing in the Liyazhuang Mine No.2 coal seam.The stress distribution and floor failure in the lower works after mining the upper coal is studied through numerical simulations.The failure mechanism of the roof and walls of a roadway located in the lower coal seam is described.The predicted deformation and failure of the roadway for different distances between the two coal seams are used to design two ways of supporting the lower structure.One is a combined support consisting of anchors with a joist steel tent and a combined anchor truss.A field test of the design was performed to good effect.The results have significance for the design of supports for roadways located in similar conditions. 展开更多
关键词 Adjacent coal seams floor destruction of the upper coal Lower coal roadway Deformation and failure Support measure
下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部