The L4 roof of Beijing Olympic International Conference Center is a long-span floor with a tuned mass damper system. The locations of dampers in the layout are not optimal theoretically. This paper is about the locati...The L4 roof of Beijing Olympic International Conference Center is a long-span floor with a tuned mass damper system. The locations of dampers in the layout are not optimal theoretically. This paper is about the location optimization of the 74 sets of dampers on the floor. The main content includes the establishment of a 2D dot-matrix model for the structure, the optimal location combination searched by a genetic algorithm, and the optimal results for five working conditions by calculating the total weight.展开更多
The increasing strength of new structural materials and the span of new structures, accompanied by aesthetic requirements for greater slenderness, are resulting in more applications of long-span structures. In this pa...The increasing strength of new structural materials and the span of new structures, accompanied by aesthetic requirements for greater slenderness, are resulting in more applications of long-span structures. In this paper, serviceability control technology and its design theory are studied. First, a novel tuned mass damper (TMD) with controllable stiffness is developed. Second, methods for modeling human-induced loads are proposed, including standing up, walking, jumping and running, and an analysis method for long-span floor response is proposed based on a finite element model. Third, a design method for long-span floors installed with a multiple TMD (MTMD) system considering human comfort is introduced, largely based on a study of existing literature. Finally, a design, analysis and field test is conducted using several large scale buildings in China including the Beijing Olympic Park National Conference Center, Changsha New Railway Station and the Xi'an Northern Railway Station. The analytical and field test results show that the MTMD system designed using the proposed method is capable of effectively mitigating the vertical vibration of long-span floor structures. The study presented in this paper provides an important reference for the analysis of vibration serviceability of similar long-span floors and design of control system for these structures.展开更多
基金Funded by the National Natural Science Foundation of China(No.51278106)the Scientific Program of the Bureau of Education,Fujian Province(No.JA15629)
文摘The L4 roof of Beijing Olympic International Conference Center is a long-span floor with a tuned mass damper system. The locations of dampers in the layout are not optimal theoretically. This paper is about the location optimization of the 74 sets of dampers on the floor. The main content includes the establishment of a 2D dot-matrix model for the structure, the optimal location combination searched by a genetic algorithm, and the optimal results for five working conditions by calculating the total weight.
基金National Natural Science Foundation of China Under Grant No.51178100Foundation of the Priority Sciences Development Program of Higher Education Institutions of Jiangsu Province Under Grant No.1105007001+1 种基金Teaching and Research Foundation for Excellent Young Teachers of Southeast University Under Grant No.3205001205Scientific Research Foundation the Scientific Research Foundation of Graduate School of Southeast University Under Grant No.YBJJ1006
文摘The increasing strength of new structural materials and the span of new structures, accompanied by aesthetic requirements for greater slenderness, are resulting in more applications of long-span structures. In this paper, serviceability control technology and its design theory are studied. First, a novel tuned mass damper (TMD) with controllable stiffness is developed. Second, methods for modeling human-induced loads are proposed, including standing up, walking, jumping and running, and an analysis method for long-span floor response is proposed based on a finite element model. Third, a design method for long-span floors installed with a multiple TMD (MTMD) system considering human comfort is introduced, largely based on a study of existing literature. Finally, a design, analysis and field test is conducted using several large scale buildings in China including the Beijing Olympic Park National Conference Center, Changsha New Railway Station and the Xi'an Northern Railway Station. The analytical and field test results show that the MTMD system designed using the proposed method is capable of effectively mitigating the vertical vibration of long-span floor structures. The study presented in this paper provides an important reference for the analysis of vibration serviceability of similar long-span floors and design of control system for these structures.