Changes in main biochemical respiratory pathways in dormant nectarine floral buds were studied with nectarine trees (Prunus persica.var, nectariana cv. Shuguang) in order to determine the function of respiration in ...Changes in main biochemical respiratory pathways in dormant nectarine floral buds were studied with nectarine trees (Prunus persica.var, nectariana cv. Shuguang) in order to determine the function of respiration in dormancy release. Oxygen-electrode system and respiratory inhibitors were used to measure total respiratory rates and rates of respiratory pathways. Results showed that chilling deficiency blocked the transition of respiratory mode, and made buds stay in a state of high level pentose phosphate pathway (PPP) and low level tricarboxylie acid cycle (TCA). The decline of PPP and activation of TCA occurred synchronously with the release of dormancy. In addition, the inhibition of PPP stimulated a respiration increase related with TCA. It could be concluded that the function of PPP activation in dormancy release might be limited and PPP declination inducing TCA activation might be part of respiration mode transition mechanism during bud sprouting.展开更多
The sectioned thin cell layers (TCL) of flower stalk of Cichorium intybus L. were cultured in MS medium supplemented with NAA and BA or IAA and BA where floral and vegetative buds were developed from the explant. ...The sectioned thin cell layers (TCL) of flower stalk of Cichorium intybus L. were cultured in MS medium supplemented with NAA and BA or IAA and BA where floral and vegetative buds were developed from the explant. Endogenous IAA, DHZ+DHZR, iPA increased significantly during the floral bud formation, while Z+ZR remained changed. The levels of cytokinins, DHZ+DHZR, iPA, and Z+ZR all increased significantly during the vegetative bud formation, however IAA level was reduced during the first 7 days of culture and increased to two thirds of initial values on the day when the bud primordia were formed. The results suggested that the initiation of floral buds was associated with a high IAA/CTK ratio, whereas the induction of vegetative bud differentiation was related to a low IAA/CTK ratio.展开更多
Abstract: Arabinogalactan proteins (AGPs) and pectins were detected in the floral buds of cucumber (Cucumis sativus L.) during its sex determination using the following monoclonal antibodies: MAC 207 (recognizes AGP e...Abstract: Arabinogalactan proteins (AGPs) and pectins were detected in the floral buds of cucumber (Cucumis sativus L.) during its sex determination using the following monoclonal antibodies: MAC 207 (recognizes AGP epitopes); JIM 8 (recognizes a subset of AGP epitopes); and JIM 5 and JIM 7 (epitopes of pectins esterified to various degrees). In the stem apex meristem (SAM) of the cucumber, epitopes of MAC 207, JIM 7, and JIM 5 were localized in the cells from second to third peripheral layers when the sex organ primodium began to differentiate; epitopes of MAC 207 and JIM 5 were also detected in the ragged edge cells. A very dense labeling signal with MAC 207 was observed in the carpel and pistil primodium. The AGP epitopes recognized by JIM 8 were localized in the anther of the male flower and the anther-like portion of the stagnant stamen of the female flower. This suggests that the AGPs and pectins in the SAM of the cucumber are closely associated with the differentiation of the SAM, from meristematic cells to floral primodium. The subset of AGPs recognized by JIM 8 may play an important role in stamen formation.展开更多
Many studies have shown that exogenous phytohomones or plant growth regulators play a very important role in the organ differentiation of plant cell in vitro, e. g. auxin and cytokinin are needed in tobacco floral bud...Many studies have shown that exogenous phytohomones or plant growth regulators play a very important role in the organ differentiation of plant cell in vitro, e. g. auxin and cytokinin are needed in tobacco floral bud neoformation. Why so? It was conjectured that plant cells could not synthesize auxin in vitro. However, Kutacek recently re-展开更多
By employing TCLs (thin cell layers) culture, the floral gradient in flowering tobacco of different developmental stages was confirmed. The TCLs from early flowering tobacco regenerated more floral buds than those fro...By employing TCLs (thin cell layers) culture, the floral gradient in flowering tobacco of different developmental stages was confirmed. The TCLs from early flowering tobacco regenerated more floral buds than those from the tobacco plants in full blooming or fruiting stages. Analysis of free amino acid levels revealed the acropetal gradient of Pro in flowering tobacco stem. L-Pro. L-Trp. D,L-Met and L-Arg were respectively added into the culture medium for testing their influence on floral bud formation from tobacco pedicel segments. Only L-Trp evidently enhanced the floral bud neoformation.展开更多
基金supported by the National 863 Program of China(2005AA247041)Key Projects in the National Science and Technology Pillar Program during the 11th Five-Year Plan period,China(2006BAD07B06)
文摘Changes in main biochemical respiratory pathways in dormant nectarine floral buds were studied with nectarine trees (Prunus persica.var, nectariana cv. Shuguang) in order to determine the function of respiration in dormancy release. Oxygen-electrode system and respiratory inhibitors were used to measure total respiratory rates and rates of respiratory pathways. Results showed that chilling deficiency blocked the transition of respiratory mode, and made buds stay in a state of high level pentose phosphate pathway (PPP) and low level tricarboxylie acid cycle (TCA). The decline of PPP and activation of TCA occurred synchronously with the release of dormancy. In addition, the inhibition of PPP stimulated a respiration increase related with TCA. It could be concluded that the function of PPP activation in dormancy release might be limited and PPP declination inducing TCA activation might be part of respiration mode transition mechanism during bud sprouting.
文摘The sectioned thin cell layers (TCL) of flower stalk of Cichorium intybus L. were cultured in MS medium supplemented with NAA and BA or IAA and BA where floral and vegetative buds were developed from the explant. Endogenous IAA, DHZ+DHZR, iPA increased significantly during the floral bud formation, while Z+ZR remained changed. The levels of cytokinins, DHZ+DHZR, iPA, and Z+ZR all increased significantly during the vegetative bud formation, however IAA level was reduced during the first 7 days of culture and increased to two thirds of initial values on the day when the bud primordia were formed. The results suggested that the initiation of floral buds was associated with a high IAA/CTK ratio, whereas the induction of vegetative bud differentiation was related to a low IAA/CTK ratio.
文摘Abstract: Arabinogalactan proteins (AGPs) and pectins were detected in the floral buds of cucumber (Cucumis sativus L.) during its sex determination using the following monoclonal antibodies: MAC 207 (recognizes AGP epitopes); JIM 8 (recognizes a subset of AGP epitopes); and JIM 5 and JIM 7 (epitopes of pectins esterified to various degrees). In the stem apex meristem (SAM) of the cucumber, epitopes of MAC 207, JIM 7, and JIM 5 were localized in the cells from second to third peripheral layers when the sex organ primodium began to differentiate; epitopes of MAC 207 and JIM 5 were also detected in the ragged edge cells. A very dense labeling signal with MAC 207 was observed in the carpel and pistil primodium. The AGP epitopes recognized by JIM 8 were localized in the anther of the male flower and the anther-like portion of the stagnant stamen of the female flower. This suggests that the AGPs and pectins in the SAM of the cucumber are closely associated with the differentiation of the SAM, from meristematic cells to floral primodium. The subset of AGPs recognized by JIM 8 may play an important role in stamen formation.
基金Project supported by the Director Foundation of Shanghai Institute of Plant Physiology, Academia Sinica.
文摘Many studies have shown that exogenous phytohomones or plant growth regulators play a very important role in the organ differentiation of plant cell in vitro, e. g. auxin and cytokinin are needed in tobacco floral bud neoformation. Why so? It was conjectured that plant cells could not synthesize auxin in vitro. However, Kutacek recently re-
文摘By employing TCLs (thin cell layers) culture, the floral gradient in flowering tobacco of different developmental stages was confirmed. The TCLs from early flowering tobacco regenerated more floral buds than those from the tobacco plants in full blooming or fruiting stages. Analysis of free amino acid levels revealed the acropetal gradient of Pro in flowering tobacco stem. L-Pro. L-Trp. D,L-Met and L-Arg were respectively added into the culture medium for testing their influence on floral bud formation from tobacco pedicel segments. Only L-Trp evidently enhanced the floral bud neoformation.