期刊文献+
共找到1篇文章
< 1 >
每页显示 20 50 100
ERF1 delays flowering through direct inhibition of FLOWERING LOCUS T expression in Arabidopsis 被引量:4
1
作者 Yanli Chen Liping Zhang +2 位作者 Haiyan Zhang Ligang Chen Diqiu Yu 《Journal of Integrative Plant Biology》 SCIE CAS CSCD 2021年第10期1712-1723,共12页
ETHYLENE RESPONSE FACTOR1(ERF1)is a key component in ethylene signaling,playing crucial roles in both biotic and abiotic stress responses.Here,we demonstrate that ERF1 also has an important role during floral initiati... ETHYLENE RESPONSE FACTOR1(ERF1)is a key component in ethylene signaling,playing crucial roles in both biotic and abiotic stress responses.Here,we demonstrate that ERF1 also has an important role during floral initiation in Arabidopsis thaliana.Knockdown or knockout of ERF1 accelerated floral initiation,whereas overexpression of ERF1 dramatically delayed floral transition.These contrasting phenotypes were correlated with opposite transcript levels of FLOWERING LOCUS T(FT).Chromatin immunoprecipitation(ChIP)assays revealed that ERF1 associates with genomic regions of the FT gene to repress its transcription.ft-10/ERF1RNAi plants showed a similar flowering phenotype to the ft-10 mutant,whereas the flowering of FTox/ERF1ox mimicked that of FTox plants,suggesting that ERF1 acts upstream of FT during floral initiation.Similarly,altered floral transition in ethylene-related mutants was also correlated with FT expression.Further analysis suggested that ERF1 also participates in delay in flowering-time control mediated by the ethylene precursor 1-aminocyclopropane-1-carboxylic acid.Thus,ERF1 may act as a negative modulator of flowering-time control by repressing FT transcription in Arabidopsis. 展开更多
关键词 Arabidopsis thaliana ETHYLENE ETHYLENE RESPONSE FACTOR1 floral initiation FLOWERING LOCUS T
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部