Nitrogen(N)fertilization is critical for spike and floret development,which affects the number of fertile florets per spike(NFFs).However,the physiological regulation of the floret development process by N fertilizati...Nitrogen(N)fertilization is critical for spike and floret development,which affects the number of fertile florets per spike(NFFs).However,the physiological regulation of the floret development process by N fertilization is largely unknown.A high temporal-resolution investigation of floret primordia number and morphology,dry matter,and N availability was conducted under three N fertilization levels:0(N0),120(N1)and 240(N2)kg ha^(−1).Interestingly,fertile florets at anthesis stage were determined by those floret primordia with meiotic ability at booting stage:meiotic ability was a threshold that predicted whether a floret primordium became fertile or abortive florets.Because the developmental rate of the 4th floret primordium in the central spikelet was accelerated and then they acquired meiotic ability,the NFFs increased gradually as N application increased,but the increase range decreased under N2.There were no differences in spike N concentration among treatments,but leaf N concentration was increased in the N1 and N2 treatments.Correspondingly,dry matter accumulation and N content of the leaf and spike in the N1 and N2 treatments was increased as compared to N0.Clearly,optimal N fertilization increased leaf N availability and transport of assimilates to spikes,and allowed more floret primordia to acquire meiotic ability and become fertile florets,finally increasing NFFs.There was no difference in leaf N concentration between N1 and N2 treatment,whereas soil N concentration at 0–60 cm soil layers was higher in N2 than in N1 treatment,implying that there was still some N fertilization that remained unused.Therefore,improving the leaf’s ability to further use N fertilizer is vital for greater NFFs.展开更多
Promoting more floret primordia within a spike to acquire fertile potential during the differentiation and pre-dimorphism phases is critical for increasing the number of fertile florets per spike(NFFs).However,it is y...Promoting more floret primordia within a spike to acquire fertile potential during the differentiation and pre-dimorphism phases is critical for increasing the number of fertile florets per spike(NFFs).However,it is yet unknown the physiological mechanism regulating the complex and dynamic process.This study aimed to clarify how intra-spike hormones,pigments,and assimilates coordinate with each other to regulate spike morphology and then floret primordia development.A two-year field experiment was conducted with two winter wheat genotypes:N50(big-spike with greater NFFs)and SM22(mediumspike with fewer NFFs).We monitored high temporal and spatial-resolution changes in the number and morphology of floret primordia within a spike,as well as in intra-spike hormones,pigments,and assimilates.Our results revealed that the big-spike genotype had more NFFs than the medium-spike genotype,not only because they had more spikelets,but also because they had greater NFFs mainly at central spikelets.More floret primordia at central spikelets had sufficient time to develop and acquire fertile potential during the differentiation phase(167-176 d after sowing,DAS)and the pre-dimorphism phase(179 DAS)for the big-spike genotype than the medium-spike genotype.Floret primordia with fertile morphology during the pre-dimorphism phase always developed into fertile florets during the dimorphism phase.Those early-developed floret primordia most proximal and intermediate to the rachis in the big-spike genotype developed faster than the medium-spike genotype.Correspondingly,the spike dry matter and pigments(chlorophyll a,chlorophyll b,carotene,and carotenoids)content during 170-182 DAS,auxin(IAA)and cytokinin(CTK)content on 167 DAS were significantly higher in the big-spike genotype than in the medium-spike genotype,while jasmonic acid(JA)content was significantly lower in the big-spike genotype compared to the medium-spike genotype during 167-182 DAS.Since the significant differences in intra-spike hormone content of the two genotypes appear earlier than those in dry matter and pigments,we propose a possible model that helped the N50 genotype(big-spike)to form more fertile florets,taking the intra-spike hormone content as a signaling molecule induced assimilates and pigments synthesis,which accelerated the development of more floret primordia during the differentiation phase and then acquired fertile potential during the pre-dimorphism phase,finally improved the NFFs.Our high temporal and spatial-resolution analysis provides an accurate time window for precision cultivation and effective physiological breeding to improve the number of fertile florets in wheat.展开更多
The levels of endogenous plant hormones regulate floret development and degeneration, and thus grain set in flower crops. This study was undertaken to characterize the changes of endogenous hormone levels during flor...The levels of endogenous plant hormones regulate floret development and degeneration, and thus grain set in flower crops. This study was undertaken to characterize the changes of endogenous hormone levels during floret development in three wheat ( Triticum aestivum L.) genotypes: “97J1' with the highest grain set and fertile florets per spike, “H8679' with the lowest grain set and fertile florets per spike, and a medium, “YM158'. The results showed that the peak level of ABA appeared between stamen and pistil differentiation and antherlobe formation of floret development, and the timing delayed with the size of spike (earliest in “H8679” and latest in “97J1”). From antherlobe formation to meiosis, the levels of ABA and GA 1+3 decreased sharply in the ears of “97J1”, while in the ears of “H8679” there was only a slight decrease in ABA, and even an increase in GA 1+3 . The ratio of isopentenyladenosine (iPA)/ABA and IAA/ABA in the ears of “97J1” increased sharply from antherlobe formation to meiosis, but changed only slightly in the ears of “H8679”. At antherlobe formation, IAA and GA 1+3 levels were higher in the ears of “97J1”, but lower in the ears of “H8679” than in the leaves. At meiosis, ABA, GA 1+3 and IAA levels in the “97J1” ears were much lower than in the leaves, but similar in “H8679”. These results indicated that the sharp decreases of ABA and GA 1+3 in ears from antherlobe formation to meiosis and the lowest maintenance at meiosis may be favorable for development of fertile florets and enhancement of grain set in wheat.展开更多
A double mutant with streaked leaf and abnormal floret was found and temporarily named streaked leaf and floral organ number mutant (st-fon). For this mutant, besides white streak appeared on culm, leaves and panicl...A double mutant with streaked leaf and abnormal floret was found and temporarily named streaked leaf and floral organ number mutant (st-fon). For this mutant, besides white streak appeared on culm, leaves and panicles, the number of floral organs increased and florets cracked. The extreme phenotype was that several small florets grew from one floret or branch rachis in small florets extended and developed into panicles. By using transmission electron microscope to observe the ultrastructure of white histocytes of leaves at the seedling stage, the white tissues which showed abnormal plastids, lamellas and thylakoids could not develop into normal chloroplast, and the development of chloroplast was blocked at the early growth stage of plastid. Scanning electron microscope and paraffin section were also used to observe the development of floral organs, and the results indicated that the development of floral meristem was out of order and unlimited, whereas in the twisty leaves, vascular bundle sheath cells grew excessively, or some bubbly cells increased. Genetic analyses carried out by means of cross and backcross with four normal-leaf-color materials revealed that the mutant is of cytoplasm inheritance.展开更多
Rice(Oryza sativa L.) is one of the most important food crops worldwide and a model monocot plant for gene function analysis, so it is an ideal system for studying flower development. This study reports a mutant, name...Rice(Oryza sativa L.) is one of the most important food crops worldwide and a model monocot plant for gene function analysis, so it is an ideal system for studying flower development. This study reports a mutant, named multi-floret spikelet 3(mfs3), which is related to the spikelet development in rice and derived from the ethylmethane sulfonate(EMS)-treated rice cultivar XIDA 1 B. In mfs3, the main body of palea(bop) was degenerated severely and only glume-like marginal regions of palea(mrp) remained, while other floral organs developed normally, indicating that the palea identity was seriously influenced by the mutation. It was also observed that the number of floral organs was increased in some spikelets, including 2 lemmas, 4 mrp, 4 lodicules, 8–10 stamens, and 2 pistils, which meant that the spikelet determinacy was lost to some degree in mfs3. Furthermore, genetic analysis demonstrated that the mfs3 trait was controlled by a single recessive gene. Using 426 F2 mutants derived from the cross between sterile line 56 S and mfs3, the MULTI-FLORET SPIKELET 3(MFS3) gene was mapped between the molecular markers RM19347 and RM19352 on Chr.6, with a physical distance of 106.3 kb. Sequencing of candidate genes revealed that an 83-bp fragment loss and a base substitution occurred in the LOC_Os06 g04540 gene in the mutant, confirming preliminarily that the LOC_Os06 g04540 gene was the MFS3 candidate gene. Subsequent q PCR analysis showed that the mutation caused the down-regulation of Os MADS1 and FON1 genes, and the up-regulation of Os IDS1 and SNB genes, which are all involved in the regulation of spikelet development. The MFS3 mutation also significantly reduced the transcription of the REP gene, which is involved in palea development. These results indicated that the MFS3 gene might be involved in the spikelet meristem determinacy and palea identity by regulating the expression of these related genes.展开更多
The study was carried out on the effect of nitrogen application in different wheat growth stage on the floret development, the photosynthetic rate, the yield and its components of winter wheat. The result indicated th...The study was carried out on the effect of nitrogen application in different wheat growth stage on the floret development, the photosynthetic rate, the yield and its components of winter wheat. The result indicated that nitrogen application in the pistil-stamen primordium formation stage and the tetrad formation stage of wheat growth prolonged the duration of floret development, promoted the balance growth of floret and reduced the floret decadence number, thus increased the grain number per spike. Nitrogen application in the middle and in the late stages of wheat development increased the photosynthetic ability of the plant leaves in the later stage, and also lengthened the peak of grain filling stage, thus enhanced the grain weight and yield of wheat significantly.展开更多
Heat waves induced by climate warming have become common in food-producing regions worldwide,frequently coinciding with high temperature(HT)-sensitive stages of many crops and thus threatening global food security.Und...Heat waves induced by climate warming have become common in food-producing regions worldwide,frequently coinciding with high temperature(HT)-sensitive stages of many crops and thus threatening global food security.Understanding the HT sensitivity of reproductive organs is currently of great interest for increasing seed set.The responses of seed set to HT involve multiple processes in both male and female reproductive organs,but we currently lack an integrated and systematic summary of these responses for the world’s three leading food crops(rice,wheat,and maize).In the present work,we define the critical high temperature thresholds for seed set in rice(37.2℃±0.2℃),wheat(27.3℃±0.5℃),and maize(37.9℃±0.4℃)during flowering.We assess the HT sensitivity of these three cereals from the microspore stage to the lag period,including effects of HT on flowering dynamics,floret growth and development,pollination,and fertilization.Our review synthesizes existing knowledge about the effects of HT stress on spikelet opening,anther dehiscence,pollen shedding number,pollen viability,pistil and stigma function,pollen germination on the stigma,and pollen tube elongation.HT-induced spikelet closure and arrest of pollen tube elongation have a catastrophic effect on pollination and fertilization in maize.Rice benefits from pollination under HT stress owing to bottom anther dehiscence and cleistogamy.Cleistogamy and secondary spikelet opening increase the probability of pollination success in wheat under HT stress.However,cereal crops themselves also have protective measures under HT stress.Lower canopy/tissue temperatures compared with air temperatures indicate that cereal crops,especially rice,can partly protect themselves from heat damage.In maize,husk leaves reduce inner ear temperature by about 5℃compared with outer ear temperature,thereby protecting the later phases of pollen tube growth and fertilization processes.These findings have important implications for accurate modeling,optimized crop management,and breeding of new varieties to cope with HT stress in the most important staple crops.展开更多
With the support by the National Natural Science Foundation of China,a study by the research group led by Prof.He Guanghua(何光华)from the Rice Research Institute,Southwest University demonstrates that LATERAL FLORET ...With the support by the National Natural Science Foundation of China,a study by the research group led by Prof.He Guanghua(何光华)from the Rice Research Institute,Southwest University demonstrates that LATERAL FLORET 1induces the'three-florets spikelet'in rice,which was published in PNAS(2017,114(37):9984-9989).展开更多
The yield of wheat in wheat–rice rotation cropping systems in the Yangtze River Plain, China, is adversely impacted by waterlogging. A raised bed planting(RBP) pattern may reduce waterlogging and increase the wheat y...The yield of wheat in wheat–rice rotation cropping systems in the Yangtze River Plain, China, is adversely impacted by waterlogging. A raised bed planting(RBP) pattern may reduce waterlogging and increase the wheat yield after rice cultivation by improving the grain number per spike. However, the physiological basis for grain formation under RBP conditions remains poorly understood. The present study was performed over two growing seasons(2018/2019and 2019/2020) to examine the effects of the planting pattern(i.e., RBP and flat planting(FP)) on the floret and grain formation features and leaf photosynthetic source characteristics of wheat. The results indicated that implementation of the RBP pattern improved the soil–plant nitrogen(N) supply during floret development, which facilitated balanced floret development, resulting in a 9.5% increase in the number of fertile florets per spike. Moreover, the RBP pattern delayed wheat leaf senescence and increased the photosynthetic source capacity by 13.9%, which produced more assimilates for grain filling. Delayed leaf senescence was attributed to the resultant high leaf N content and enhanced antioxidant metabolism. Correspondingly, under RBP conditions, 7.6–8.6% more grains per spike were recorded, and the grain yield was ultimately enhanced by 10.4–12.7%. These results demonstrate that the improvement of the spike differentiation process and the enhancement of the leaf photosynthetic capacity were the main reasons for the increased grain number per spike of wheat under the RBP pattern, and additional improvements in this technique should be achievable through further investigation.展开更多
【目的】淀粉降解与水稻浆片膨大和颖花开放过程密切相关,探究α-淀粉酶基因在颖花开放过程中的作用,为杂交水稻制种效率及产量的提高提供理论依据。【方法】在水稻扬花时,利用稀释碱性品红溶液进行离体穗子吸水试验,观察碱性品红在颖...【目的】淀粉降解与水稻浆片膨大和颖花开放过程密切相关,探究α-淀粉酶基因在颖花开放过程中的作用,为杂交水稻制种效率及产量的提高提供理论依据。【方法】在水稻扬花时,利用稀释碱性品红溶液进行离体穗子吸水试验,观察碱性品红在颖花中残留的组织,通过碘-碘化钾染色法确定11—14期(依据雄蕊发育分期)淀粉粒的分布变化,并通过RT-PCR、RT-qPCR和GUS报告基因检测多个α-淀粉酶基因在此期间的时空表达模式。【结果】水稻颖花开放前,内外稃片通过相互嵌合的钩合槽(marginal tissues of palea,mtp)将浆片和雌雄蕊封闭在内。当颖花开放时,浆片快速膨大,使得内外稃片的钩合点松开。扬花期间,离体穗子在稀释碱性品红溶液中吸水后,碱性品红染料主要残留在内外稃片钩合槽和浆片相连处组织以及花丝中。碘染试验显示,在12期(颖花开放前),淀粉粒主要分布在雄蕊和内外稃片钩合槽,浆片中也有少量淀粉粒,在13—14期(颖花开放中),内外稃片钩合槽和浆片中的淀粉粒均降解。RT-PCR分析发现OsRAmy2A和OsRAmy3D的表达量从12期开始上升,至13—14期表达量显著增强,到受精后1 d(1 day after pollination,DAP1)表达量又明显下降,OsRAmy3E和OsRAmy3F在此过程中持续表达,OsRAmy3F表达量弱于OsRAmy3E。RT-qPCR分析显示,在11—14期,OsRAmy2A表达量变化最显著,其次是OsRAmy3A和OsRAmy3E,OsRAmy3F的表达量变化幅度最不明显,OsRAmy2A和OsRAmy3A在13—14期表达量显著增加,而OsRAmy3E和OsRAmy3F在不同时期均表达,在13—14期表达量略有升高。在12期,OsRAmy2A主要在内外稃以及内外稃片钩合槽上表达,在13—14期主要在内外稃片钩合槽、浆片以及花丝上表达。【结论】水稻颖花开放过程中淀粉粒在mtp和浆片中明显降解,与OsRAmy2A、OsRAmy3D等α-淀粉酶基因时空表达模式相对应,可能与水稻浆片膨大导致颖花开放过程密切相关。展开更多
基金This study was supported by the National Key Research and Development Program of China(2022YFD1900703,2022YFD2300802)the Earmarked Fund for CARS(CARS-3)+1 种基金the National Natural Science Foundation of China(31871563)China Postdoctoral Science Foundation(2022M723437).
文摘Nitrogen(N)fertilization is critical for spike and floret development,which affects the number of fertile florets per spike(NFFs).However,the physiological regulation of the floret development process by N fertilization is largely unknown.A high temporal-resolution investigation of floret primordia number and morphology,dry matter,and N availability was conducted under three N fertilization levels:0(N0),120(N1)and 240(N2)kg ha^(−1).Interestingly,fertile florets at anthesis stage were determined by those floret primordia with meiotic ability at booting stage:meiotic ability was a threshold that predicted whether a floret primordium became fertile or abortive florets.Because the developmental rate of the 4th floret primordium in the central spikelet was accelerated and then they acquired meiotic ability,the NFFs increased gradually as N application increased,but the increase range decreased under N2.There were no differences in spike N concentration among treatments,but leaf N concentration was increased in the N1 and N2 treatments.Correspondingly,dry matter accumulation and N content of the leaf and spike in the N1 and N2 treatments was increased as compared to N0.Clearly,optimal N fertilization increased leaf N availability and transport of assimilates to spikes,and allowed more floret primordia to acquire meiotic ability and become fertile florets,finally increasing NFFs.There was no difference in leaf N concentration between N1 and N2 treatment,whereas soil N concentration at 0–60 cm soil layers was higher in N2 than in N1 treatment,implying that there was still some N fertilization that remained unused.Therefore,improving the leaf’s ability to further use N fertilizer is vital for greater NFFs.
基金funded by the Scientific and Technological Innovation Team Project of Seed Industry for Saline-alkali Tolerant Crop in Hebei Province(23327501D)the National Key Research and Development Program of China(2022YFD2300802,2022YFD1900703)the China Agriculture Research System(CARS-3).
文摘Promoting more floret primordia within a spike to acquire fertile potential during the differentiation and pre-dimorphism phases is critical for increasing the number of fertile florets per spike(NFFs).However,it is yet unknown the physiological mechanism regulating the complex and dynamic process.This study aimed to clarify how intra-spike hormones,pigments,and assimilates coordinate with each other to regulate spike morphology and then floret primordia development.A two-year field experiment was conducted with two winter wheat genotypes:N50(big-spike with greater NFFs)and SM22(mediumspike with fewer NFFs).We monitored high temporal and spatial-resolution changes in the number and morphology of floret primordia within a spike,as well as in intra-spike hormones,pigments,and assimilates.Our results revealed that the big-spike genotype had more NFFs than the medium-spike genotype,not only because they had more spikelets,but also because they had greater NFFs mainly at central spikelets.More floret primordia at central spikelets had sufficient time to develop and acquire fertile potential during the differentiation phase(167-176 d after sowing,DAS)and the pre-dimorphism phase(179 DAS)for the big-spike genotype than the medium-spike genotype.Floret primordia with fertile morphology during the pre-dimorphism phase always developed into fertile florets during the dimorphism phase.Those early-developed floret primordia most proximal and intermediate to the rachis in the big-spike genotype developed faster than the medium-spike genotype.Correspondingly,the spike dry matter and pigments(chlorophyll a,chlorophyll b,carotene,and carotenoids)content during 170-182 DAS,auxin(IAA)and cytokinin(CTK)content on 167 DAS were significantly higher in the big-spike genotype than in the medium-spike genotype,while jasmonic acid(JA)content was significantly lower in the big-spike genotype compared to the medium-spike genotype during 167-182 DAS.Since the significant differences in intra-spike hormone content of the two genotypes appear earlier than those in dry matter and pigments,we propose a possible model that helped the N50 genotype(big-spike)to form more fertile florets,taking the intra-spike hormone content as a signaling molecule induced assimilates and pigments synthesis,which accelerated the development of more floret primordia during the differentiation phase and then acquired fertile potential during the pre-dimorphism phase,finally improved the NFFs.Our high temporal and spatial-resolution analysis provides an accurate time window for precision cultivation and effective physiological breeding to improve the number of fertile florets in wheat.
文摘The levels of endogenous plant hormones regulate floret development and degeneration, and thus grain set in flower crops. This study was undertaken to characterize the changes of endogenous hormone levels during floret development in three wheat ( Triticum aestivum L.) genotypes: “97J1' with the highest grain set and fertile florets per spike, “H8679' with the lowest grain set and fertile florets per spike, and a medium, “YM158'. The results showed that the peak level of ABA appeared between stamen and pistil differentiation and antherlobe formation of floret development, and the timing delayed with the size of spike (earliest in “H8679” and latest in “97J1”). From antherlobe formation to meiosis, the levels of ABA and GA 1+3 decreased sharply in the ears of “97J1”, while in the ears of “H8679” there was only a slight decrease in ABA, and even an increase in GA 1+3 . The ratio of isopentenyladenosine (iPA)/ABA and IAA/ABA in the ears of “97J1” increased sharply from antherlobe formation to meiosis, but changed only slightly in the ears of “H8679”. At antherlobe formation, IAA and GA 1+3 levels were higher in the ears of “97J1”, but lower in the ears of “H8679” than in the leaves. At meiosis, ABA, GA 1+3 and IAA levels in the “97J1” ears were much lower than in the leaves, but similar in “H8679”. These results indicated that the sharp decreases of ABA and GA 1+3 in ears from antherlobe formation to meiosis and the lowest maintenance at meiosis may be favorable for development of fertile florets and enhancement of grain set in wheat.
基金supported by the Foundation Program,Innovative Team Development Plan of the Ministry of Education,China(Grant No.IRT0453)the Financial Gene Engineering Excellent Article Foundation Program of Sichuan Province,China(Grant No.2011LWJJ-005)
文摘A double mutant with streaked leaf and abnormal floret was found and temporarily named streaked leaf and floral organ number mutant (st-fon). For this mutant, besides white streak appeared on culm, leaves and panicles, the number of floral organs increased and florets cracked. The extreme phenotype was that several small florets grew from one floret or branch rachis in small florets extended and developed into panicles. By using transmission electron microscope to observe the ultrastructure of white histocytes of leaves at the seedling stage, the white tissues which showed abnormal plastids, lamellas and thylakoids could not develop into normal chloroplast, and the development of chloroplast was blocked at the early growth stage of plastid. Scanning electron microscope and paraffin section were also used to observe the development of floral organs, and the results indicated that the development of floral meristem was out of order and unlimited, whereas in the twisty leaves, vascular bundle sheath cells grew excessively, or some bubbly cells increased. Genetic analyses carried out by means of cross and backcross with four normal-leaf-color materials revealed that the mutant is of cytoplasm inheritance.
基金supported by the National Natural Science Foundation of China (31271304)the National Key Research and Development Program of China (2017YFD0100202)+2 种基金the Natural Science Foundation of Chongqing, China (CSTC2017jcyj BX0062)the Graduate Student Scientific Research Innovation Projects in Chongqing, China (CYS2015066)the Fundamental Research Funds for the Central Universities, China (XDJK2016A013)
文摘Rice(Oryza sativa L.) is one of the most important food crops worldwide and a model monocot plant for gene function analysis, so it is an ideal system for studying flower development. This study reports a mutant, named multi-floret spikelet 3(mfs3), which is related to the spikelet development in rice and derived from the ethylmethane sulfonate(EMS)-treated rice cultivar XIDA 1 B. In mfs3, the main body of palea(bop) was degenerated severely and only glume-like marginal regions of palea(mrp) remained, while other floral organs developed normally, indicating that the palea identity was seriously influenced by the mutation. It was also observed that the number of floral organs was increased in some spikelets, including 2 lemmas, 4 mrp, 4 lodicules, 8–10 stamens, and 2 pistils, which meant that the spikelet determinacy was lost to some degree in mfs3. Furthermore, genetic analysis demonstrated that the mfs3 trait was controlled by a single recessive gene. Using 426 F2 mutants derived from the cross between sterile line 56 S and mfs3, the MULTI-FLORET SPIKELET 3(MFS3) gene was mapped between the molecular markers RM19347 and RM19352 on Chr.6, with a physical distance of 106.3 kb. Sequencing of candidate genes revealed that an 83-bp fragment loss and a base substitution occurred in the LOC_Os06 g04540 gene in the mutant, confirming preliminarily that the LOC_Os06 g04540 gene was the MFS3 candidate gene. Subsequent q PCR analysis showed that the mutation caused the down-regulation of Os MADS1 and FON1 genes, and the up-regulation of Os IDS1 and SNB genes, which are all involved in the regulation of spikelet development. The MFS3 mutation also significantly reduced the transcription of the REP gene, which is involved in palea development. These results indicated that the MFS3 gene might be involved in the spikelet meristem determinacy and palea identity by regulating the expression of these related genes.
文摘The study was carried out on the effect of nitrogen application in different wheat growth stage on the floret development, the photosynthetic rate, the yield and its components of winter wheat. The result indicated that nitrogen application in the pistil-stamen primordium formation stage and the tetrad formation stage of wheat growth prolonged the duration of floret development, promoted the balance growth of floret and reduced the floret decadence number, thus increased the grain number per spike. Nitrogen application in the middle and in the late stages of wheat development increased the photosynthetic ability of the plant leaves in the later stage, and also lengthened the peak of grain filling stage, thus enhanced the grain weight and yield of wheat significantly.
基金supported by the National Science Foundation of China(32272214)the 2115 Talent Development Program of China Agricultural University,and the General Project of Chongqing Natural Science Foundation(cstc2021jcyj-msxmX0747).
文摘Heat waves induced by climate warming have become common in food-producing regions worldwide,frequently coinciding with high temperature(HT)-sensitive stages of many crops and thus threatening global food security.Understanding the HT sensitivity of reproductive organs is currently of great interest for increasing seed set.The responses of seed set to HT involve multiple processes in both male and female reproductive organs,but we currently lack an integrated and systematic summary of these responses for the world’s three leading food crops(rice,wheat,and maize).In the present work,we define the critical high temperature thresholds for seed set in rice(37.2℃±0.2℃),wheat(27.3℃±0.5℃),and maize(37.9℃±0.4℃)during flowering.We assess the HT sensitivity of these three cereals from the microspore stage to the lag period,including effects of HT on flowering dynamics,floret growth and development,pollination,and fertilization.Our review synthesizes existing knowledge about the effects of HT stress on spikelet opening,anther dehiscence,pollen shedding number,pollen viability,pistil and stigma function,pollen germination on the stigma,and pollen tube elongation.HT-induced spikelet closure and arrest of pollen tube elongation have a catastrophic effect on pollination and fertilization in maize.Rice benefits from pollination under HT stress owing to bottom anther dehiscence and cleistogamy.Cleistogamy and secondary spikelet opening increase the probability of pollination success in wheat under HT stress.However,cereal crops themselves also have protective measures under HT stress.Lower canopy/tissue temperatures compared with air temperatures indicate that cereal crops,especially rice,can partly protect themselves from heat damage.In maize,husk leaves reduce inner ear temperature by about 5℃compared with outer ear temperature,thereby protecting the later phases of pollen tube growth and fertilization processes.These findings have important implications for accurate modeling,optimized crop management,and breeding of new varieties to cope with HT stress in the most important staple crops.
文摘With the support by the National Natural Science Foundation of China,a study by the research group led by Prof.He Guanghua(何光华)from the Rice Research Institute,Southwest University demonstrates that LATERAL FLORET 1induces the'three-florets spikelet'in rice,which was published in PNAS(2017,114(37):9984-9989).
基金funded by the National Key Research and Development Program of China (2017YFD0301306 and 2018YFD0300906)。
文摘The yield of wheat in wheat–rice rotation cropping systems in the Yangtze River Plain, China, is adversely impacted by waterlogging. A raised bed planting(RBP) pattern may reduce waterlogging and increase the wheat yield after rice cultivation by improving the grain number per spike. However, the physiological basis for grain formation under RBP conditions remains poorly understood. The present study was performed over two growing seasons(2018/2019and 2019/2020) to examine the effects of the planting pattern(i.e., RBP and flat planting(FP)) on the floret and grain formation features and leaf photosynthetic source characteristics of wheat. The results indicated that implementation of the RBP pattern improved the soil–plant nitrogen(N) supply during floret development, which facilitated balanced floret development, resulting in a 9.5% increase in the number of fertile florets per spike. Moreover, the RBP pattern delayed wheat leaf senescence and increased the photosynthetic source capacity by 13.9%, which produced more assimilates for grain filling. Delayed leaf senescence was attributed to the resultant high leaf N content and enhanced antioxidant metabolism. Correspondingly, under RBP conditions, 7.6–8.6% more grains per spike were recorded, and the grain yield was ultimately enhanced by 10.4–12.7%. These results demonstrate that the improvement of the spike differentiation process and the enhancement of the leaf photosynthetic capacity were the main reasons for the increased grain number per spike of wheat under the RBP pattern, and additional improvements in this technique should be achievable through further investigation.
文摘【目的】淀粉降解与水稻浆片膨大和颖花开放过程密切相关,探究α-淀粉酶基因在颖花开放过程中的作用,为杂交水稻制种效率及产量的提高提供理论依据。【方法】在水稻扬花时,利用稀释碱性品红溶液进行离体穗子吸水试验,观察碱性品红在颖花中残留的组织,通过碘-碘化钾染色法确定11—14期(依据雄蕊发育分期)淀粉粒的分布变化,并通过RT-PCR、RT-qPCR和GUS报告基因检测多个α-淀粉酶基因在此期间的时空表达模式。【结果】水稻颖花开放前,内外稃片通过相互嵌合的钩合槽(marginal tissues of palea,mtp)将浆片和雌雄蕊封闭在内。当颖花开放时,浆片快速膨大,使得内外稃片的钩合点松开。扬花期间,离体穗子在稀释碱性品红溶液中吸水后,碱性品红染料主要残留在内外稃片钩合槽和浆片相连处组织以及花丝中。碘染试验显示,在12期(颖花开放前),淀粉粒主要分布在雄蕊和内外稃片钩合槽,浆片中也有少量淀粉粒,在13—14期(颖花开放中),内外稃片钩合槽和浆片中的淀粉粒均降解。RT-PCR分析发现OsRAmy2A和OsRAmy3D的表达量从12期开始上升,至13—14期表达量显著增强,到受精后1 d(1 day after pollination,DAP1)表达量又明显下降,OsRAmy3E和OsRAmy3F在此过程中持续表达,OsRAmy3F表达量弱于OsRAmy3E。RT-qPCR分析显示,在11—14期,OsRAmy2A表达量变化最显著,其次是OsRAmy3A和OsRAmy3E,OsRAmy3F的表达量变化幅度最不明显,OsRAmy2A和OsRAmy3A在13—14期表达量显著增加,而OsRAmy3E和OsRAmy3F在不同时期均表达,在13—14期表达量略有升高。在12期,OsRAmy2A主要在内外稃以及内外稃片钩合槽上表达,在13—14期主要在内外稃片钩合槽、浆片以及花丝上表达。【结论】水稻颖花开放过程中淀粉粒在mtp和浆片中明显降解,与OsRAmy2A、OsRAmy3D等α-淀粉酶基因时空表达模式相对应,可能与水稻浆片膨大导致颖花开放过程密切相关。