A novel hydroxamic acid,N-hydroxy-9,10-epoxy group-octadecanamide(N-OH-9,10-O-ODA),was synthesised by modifying the structure of oleic acid.The carboxyl group of oleic acid was converted into an N-hydroxy amide group,...A novel hydroxamic acid,N-hydroxy-9,10-epoxy group-octadecanamide(N-OH-9,10-O-ODA),was synthesised by modifying the structure of oleic acid.The carboxyl group of oleic acid was converted into an N-hydroxy amide group,and an epoxy group was introduced into its structure.N-OH-9,10-O-ODA was used as a novel collector in the flotation separation of spodumene from one of its associated gangue minerals,specifically albite.N-OH-9,10-O-ODA exhibits remarkable selectivity,with a stronger affinity for collecting spodumene particles compared to albite particles.Zeta potential measurements and X-ray photoelectron spectroscopic analysis reveal that the adsorption quantity of N-OH-9,10-O-ODA on spodumene surface is comparable to that on albite surface.First-principles calculations demonstrate the diverse adsorption configurations of N-OH-9,10-O-ODA on surfaces of spodumene and albite,leading to its distinct collecting abilities for spodumene and albite particles.展开更多
This paper proposes luteolin(LUT)as a novel depressant for the flotation-based separation of scheelite and calcite in a sodium oleate(NaOL)system.The suitability of LUT as a calcite depressant is confirmed through mic...This paper proposes luteolin(LUT)as a novel depressant for the flotation-based separation of scheelite and calcite in a sodium oleate(NaOL)system.The suitability of LUT as a calcite depressant is confirmed through micro-flotation testing.At pH=9,with LUT concentration of 50 mg·L^(-1) and NaOL concentration of 50 mg·L^(-1),scheelite recovery reaches 80.3%.Calcite,on the other hand,exhibits a recovery rate of 17.6%,indicating a significant difference in floatability between the two minerals.Subsequently,the surface modifica-tions of scheelite and calcite following LUT treatment are characterized using adsorption capacity testing,Zeta potential analysis,Fourier transform infrared spectroscopy(FT-IR),X-ray photoelectron spectroscopy(XPS),and atomic force microscopy(AFM).The study in-vestigates the selective depressant mechanism of LUT on calcite.Adsorption capacity testing and Zeta potential analysis demonstrate sub-stantial absorption of LUT on the surface of calcite,impeding the further adsorption of sodium oleate,while its impact on scheelite is min-imal.FT-IR and XPS analyses reveal the selective adsorption of LUT onto the surface of calcite,forming strong chemisorption bonds between the hydroxyl group and calcium ions present.AFM directly illustrates the distinct adsorption densities of LUT on the two miner-al types.Consequently,LUT can effectively serve as a depressant for calcite,enabling the successful separation of scheelite and calcite.展开更多
To achieve efficient flotation separation of brucite and calcite,flotation separation experiments were conducted on two minerals using dodecylamine(DDA)as the collector and potassium dihydrogen phosphate(PDP)as the re...To achieve efficient flotation separation of brucite and calcite,flotation separation experiments were conducted on two minerals using dodecylamine(DDA)as the collector and potassium dihydrogen phosphate(PDP)as the regulator.The action mechanism of DDA and PDP was explored through contact angle measurement,zeta potential detection,solution chemistry calculation,FTIR analysis,and XPS detection.The flotation results showed that when DDA dosage was 35 mg/L and PDP dosage was 40 mg/L,the maximum floating difference between brucite and calcite was 79.81%,and the selectivity separation index was 6.46.The detection analysis showed that the main dissolved component HPO_(4)^(2−)of PDP is selectively strongly adsorbed on the Ca site on the surface of calcite,promoting the adsorption of the main dissolved component RNH_(3)^(+)of DDA on calcite surface,while brucite is basically not affected by PDP.Therefore,PDP is an effective regulator for the reverse flotation separation of brucite and calcite in DDA system.展开更多
Flotation separation of magnesite and its calcium-containing carbonate minerals is a difficult problem.Recently,new regulat-ors have been proposed for magnesite flotation decalcification,although traditional regulator...Flotation separation of magnesite and its calcium-containing carbonate minerals is a difficult problem.Recently,new regulat-ors have been proposed for magnesite flotation decalcification,although traditional regulators such as tannin,water glass,sodium carbon-ate,and sodium hexametaphosphate are more widely used in industry.However,they are rarely used as the main regulators in research because they perform poorly in magnesite and dolomite single-mineral flotation tests.Inspired by the limonite presedimentation method and the addition of a regulator to magnesite slurry mixing,we used a tannin pretreatment method for separating magnesite and dolomite.Microflotation experiments confirmed that the tannin pretreatment method selectively and largely reduces the flotation recovery rate of dolomite without affecting the flotation recovery rate of magnesite.Moreover,the contact angles of the tannin-pretreated magnesite and dolomite increased and decreased,respectively,in the presence of NaOl.Zeta potential and Fourier transform infrared analyses showed that the tannin pretreatment method efficiently hinders NaOl adsorption on the dolomite surface but does not affect NaOl adsorption on the magnesite surface.X-ray photoelectron spectroscopy and density functional theory calculations confirmed that tannin interacts more strongly with dolomite than with magnesite.展开更多
A novel small molecule depressant(M-DEP)was used to separate chalcopyrite and molybdenite via flotation.The results showed that M-DEP had an excellent selective depression on molybdenite,while had little effect on the...A novel small molecule depressant(M-DEP)was used to separate chalcopyrite and molybdenite via flotation.The results showed that M-DEP had an excellent selective depression on molybdenite,while had little effect on the flotation of chalcopyrite.The adsorption capacity of M-DEP on the surface of molybdenite was greater than that on chalcopyrite surface.The adsorption of M-DEP reduced the floatability of molybdenite and had less effect on the floatability of chalcopyrite,which was due to its different adsorption modes on the surface of the two minerals.Furthermore,the interaction between chalcopyrite and M-DEP was mainly chemical interaction,and almost all of the adsorbed M-DEP molecules were removed and replaced by sodium butyl xanthate(SBX).By contrast,hydrophobic interaction was the main way in which M-DEP was adsorbed on the molybdenite surface with little chemical interaction,which was less interfered by SBX addition.Therefore,M-DEP had a super selective depression on molybdenite.The study provided a novel depressant and approach for the deep separation of chalcopyrite and molybdenite via flotation.展开更多
As a cornerstone of the national economy,the iron and steel industry generates a significant amount of sintering dust containing both valuable lead resources and deleterious elements.Flotation is a promising technique...As a cornerstone of the national economy,the iron and steel industry generates a significant amount of sintering dust containing both valuable lead resources and deleterious elements.Flotation is a promising technique for lead recovery from sintering dust,but efficient separation from Fe_(2)O_(3) is still challenging.This study investigated the cooperative effect of sodium lauryl sulfate(SLS,C_(12)H_(25)SO_(4)Na)and sodium pyrophosphate(SPP,Na_(4)P_(2)O_(7))on the selective flotation of lead oxide minerals(PbOHCl and PbSO_(4))from hematite(Fe_(2)O_(3)).Optimal flotation conditions were first identified,resulting in high recovery of lead oxide minerals while inhibiting Fe_(2)O_(3) flotation.Zeta potential measurements,Fourier transform infrared spectroscopy(FT-IR)analysis,adsorption capacity analysis,and X-ray photoelectron spectroscopy(XPS)studies offer insights into the adsorption behaviors of the reagents on mineral surfaces,revealing strong adsorption of SLS on PbOHCl and PbSO_(4) surfaces and remarkable adsorption of SPP on Fe_(2)O_(3).The proposed model of reagent adsorption on mineral surfaces illustrates the selective adsorption behavior,highlighting the pivotal role of reagent adsorption in the separation process.These findings contribute to the efficient and environmentally friendly utilization of iron ore sintering dust for lead recovery,paving the way for sustainable resource management in the iron and steel industry.展开更多
The flotation separation of Cu–Fe sulfide minerals at low alkalinity can be achieved using selective depressants.In the flotation system of Cu–Fe sulfide minerals,depressants usually preferentially interact with the...The flotation separation of Cu–Fe sulfide minerals at low alkalinity can be achieved using selective depressants.In the flotation system of Cu–Fe sulfide minerals,depressants usually preferentially interact with the pyrite surface to render the mineral surface hydrophilic and hinder the adsorption of the collector.This review summarizes the advances in depressants for the flotation separation of Cu–Fe sulfide minerals at low alkalinity.These advances include use of inorganic depressants (oxidants and sulfur–oxygen compounds),natural polysaccharides (starch,dextrin,konjac glucomannan,and galactomannan),modified polymers (carboxymethyl cellulose,polyacrylamide,lignosulfonate,and tricarboxylate sodium starch),organic acids (polyglutamic acid,sodium humate,tannic acid,pyrogallic acid,salicylic acid,and lactic acid),sodium dimethyl dithiocarbamate,and diethylenetriamine.The potential application of specific inorganic and organic depressants in the flotation separation of Cu–Fe sulfide minerals at low alkalinity is reviewed.The advances in the use of organic depressants with respect to the flotation separation of Cu–Fe sulfide minerals are comprehensively detailed.Additionally,the depression performances and mechanisms of different types of organic depressants on mineral surfaces are summarized.Finally,several perspectives on depressants vis-à-vis flotation separation of Cu–Fe sulfide minerals at low alkalinity are proposed.展开更多
Layered double hydroxides(LDHs)have been shown to be effective adsorbents for boron.However,solid-liquid separation is still a problem when separating boron from industrial radioactive waste liquid.In this research,th...Layered double hydroxides(LDHs)have been shown to be effective adsorbents for boron.However,solid-liquid separation is still a problem when separating boron from industrial radioactive waste liquid.In this research,three types of Mg-Al-LDHs including Mg-Al-LDH(NO_(3)^(-)),Mg-Al-LDH(Cl^(-))and Mg-Al-LDH(SO_(4)^(2-))were applied to adsorb boron,and moreover sodium dodecylbenzenesulfonate(SDBS)was used to float the LDH particles from aqueous solution after boron adsorption.The results showed that 60 min was sufficient for the equilibrium adsorption of the three LDHs.The boron adsorption capacity of three LDHs was determined as follows:Mg-Al-LDH(NO_(3)^(-))>Mg-Al-LDH(Cl^(-))>Mg-Al-LDH(SO_(4)^(2-)),and was 2.0,0.98 and 0.2 mmol·g^(-1),each ranging from 0 to 80 mmol·L^(-1)with the initial boron concentration.The efficiency of boron removal by Mg-Al-LDH(NO_(3)^(-))and SDBS can reach up to 89.7%.Furthermore,the boron flotation mechanism of SDBS and LDHs has been studied,since SDBS as a flotation agent can react with LDHs and penetrate into the interlayer of LDHs in addition to electrostatic attraction.Therefore,LDHs in solution can be floated onto the foam layer to be separated from the solution,and the clarified solution was obtained.The method is simple and promising for boron removal from aqueous solution.展开更多
The efficient separation of chalcopyrite(CuFeS2)and galena(PbS)is essential for optimal resource utilization.However,find-ing a selective depressant that is environmentally friendly and cost effective remains a challe...The efficient separation of chalcopyrite(CuFeS2)and galena(PbS)is essential for optimal resource utilization.However,find-ing a selective depressant that is environmentally friendly and cost effective remains a challenge.Through various techniques,such as mi-croflotation tests,Fourier transform infrared spectroscopy,scanning electron microscopy(SEM)observation,X-ray photoelectron spec-troscopy(XPS),and Raman spectroscopy measurements,this study explored the use of ferric ions(Fe^(3+))as a selective depressant for ga-lena.The results of flotation tests revealed the impressive selective inhibition capabilities of Fe^(3+)when used alone.Surface analysis showed that Fe^(3+)significantly reduced the adsorption of isopropyl ethyl thionocarbamate(IPETC)on the galena surface while having a minimal impact on chalcopyrite.Further analysis using SEM,XPS,and Raman spectra revealed that Fe^(3+)can oxidize lead sulfide to form compact lead sulfate nanoparticles on the galena surface,effectively depressing IPETC adsorption and increasing surface hydrophilicity.These findings provide a promising solution for the efficient and environmentally responsible separation of chalcopyrite and galena.展开更多
Inhibitors are important for flotation separation of quartz and feldspar.In this study,a novel combined inhibitor was used to separate quartz and feldspar in near-neutral pulp.Selective inhibition of the combined inhi...Inhibitors are important for flotation separation of quartz and feldspar.In this study,a novel combined inhibitor was used to separate quartz and feldspar in near-neutral pulp.Selective inhibition of the combined inhibitor was assessed by micro-flotation experiments.And a series of detection methods were used to detect differences in the surface properties of feldspars and quartz after flotation reagents and put forward the synergistic strengthening mechanism.The outcomes were pointed out that pre-mixing combined inhibitors were more effective than the addition of Ca^(2+)and SS in sequence under the optimal proportion of 1:5.A concentrate from artificial mixed minerals that was characterized by a high quartz grade and a high recovery was acquired,and was found to be 90.70wt% and 83.70%,respectively.It was demonstrated that the combined inhibitor selectively prevented the action of the collector and feldspar from Fourier-transform infrared(FT-IR)and adsorption capacity tests.The results of X-ray photoelectron spectroscopy(XPS)indicated that Ca^(2+)directly interacts with the surface of quartz to increase the adsorption of collectors.In contrast,the chemistry property of Al on the feldspar surface was altered by combined inhibitor due to Na^(+)and Ca^(2+)taking the place of K^(+),resulting in the composite inhibitor forms a hydrophilic structure,which prevents the adsorption of the collector on the surface of feldspar by interacting with the Al active site.The combination of Ca^(2+)and SS synergically strengthens the difference of collecting property between quartz and feldspar by collector,thus achieving the effect of efficient separation.A new strategy for flotation to separate quartz from feldspar in near-neutral pulp was provided.展开更多
The flotation separation of magnesite from calcium-containing minerals has always been a difficult subject in minerals processing.This work studied the inhibition effects of carboxymethyl cellulose(CMC),sodium lignosu...The flotation separation of magnesite from calcium-containing minerals has always been a difficult subject in minerals processing.This work studied the inhibition effects of carboxymethyl cellulose(CMC),sodium lignosulphonate,polyaspartic acid(PASP)and sodium silicate on flotation behaviors of magnesite,dolomite and calcite,providing guidance for the development of reagents in magnesite flotation.The micro-flotation results showed that among these four depressants,sodium silicate presented the strongest selectivity due to the highest recovery difference,and the flotation separation of magnesite from dolomite and calcite could be achieved by using sodium silicate as the depressant.Contact angle measurement indicated that the addition of sodium silicate caused the largest differences in surface wettability of the three minerals,which was in line with micro-flotation tests.Furthermore,zeta potential test,the Fourier transform infrared(FT-IR)spectroscopy and atomic force microscope(AFM)imaging were used to reveal the inhibition mechanism of sodium silicate.The results indicated that the dominated component SiO(OH)3of sodium silicate could adsorb on minerals surfaces,and the adsorption of sodium silicate hardly affected the adsorption of NaOL on magnesite surface,but caused the reduction of NaOL adsorption on dolomite and calcite surfaces,thereby increasing the flotation selectivity.展开更多
The activation properties of ammonium oxalate on the flotation of pyrite and arsenopyrite in the lime system were studied in this work.Single mineral flotation tests showed that the ammonium oxalate strongly activated...The activation properties of ammonium oxalate on the flotation of pyrite and arsenopyrite in the lime system were studied in this work.Single mineral flotation tests showed that the ammonium oxalate strongly activated pyrite in high alkalinity and high Ca^(2+)system,whereas arsenopyrite was almost unaffected.In mineral mixtures tests,the recovery difference between pyrite and arsenopyrite after adding ammonium oxalate is more than 85%.After ammonium oxalate and ethyl xanthate treatment,the hydrophobicity of pyrite increased significantly,and the contact angle increased from 66.62°to 75.15°and then to 81.21°.After ammonium oxalate treatment,the amount of ethyl xanthate adsorption on the pyrite surface significantly increased and was much greater than that on the arsenopyrite surface.Zeta potential measurements showed that after activation by ammonium oxalate,there was a shift in the zeta potential of pyrite to more negative values by adding xanthate.X-ray photoelectron spectroscopy test showed that after ammonium oxalate treatment,the O 1s content on the surface of pyrite decreased from 44.03%to 26.18%,and the S 2p content increased from 14.01%to 27.26%,which confirmed that the ammonium oxalatetreated pyrite surface was more hydrophobic than the untreated surface.Therefore,ammonium oxalate may be used as a selective activator of pyrite in the lime system,which achieves an efficient flotation separation of S-As sulfide ores under high alkalinity and high Ca2+concentration conditions.展开更多
Lime(CaO)and sodium humate(NaHA)were used as the combined depressant for arsenopyrite pre-treated by CuSO_(4) and butyl xanthate.Micro-flotation tests show that the combined depressant CaO and NaHA achieved the select...Lime(CaO)and sodium humate(NaHA)were used as the combined depressant for arsenopyrite pre-treated by CuSO_(4) and butyl xanthate.Micro-flotation tests show that the combined depressant CaO and NaHA achieved the selective depression of arsenopyrite.Closed-circuit lab-scale test results indicate that the synergistic effect of CaO+NaHA achieved a satisfactory flotation separation of sphalerite and arsenopyrite,for which the Zn grade and recovery of Zn concentrate were 51.21%and 92.21%,respectively.Contact angle measurements,adsorption amount measurements and X-ray photoelectron spectroscopy analysis indicate that the dissolved calcium species(mainly as Ca(2+))were adsorbed on the mineral surfaces,thereby promoting NaHA adsorption.Moreover,the surface of the arsenopyrite absorbed more amount of calcium species and NaHA than that of the sphalerite,thereby accounting for the strong hydrophilic surface of arsenopyrite.The adsorption of NaHA on arsenopyrite was mainly chemical adsorption through its carboxyl groups and Ca atoms,whereas that on sphalerite surface was relatively weak.展开更多
In order to investigate the effect of butanol on quartz flotation when N-dodecyl ethylenediamine(ND)was used as collector, single mineral flotation and artificial mixed mineral(hematite and quartz were mixed at a mass...In order to investigate the effect of butanol on quartz flotation when N-dodecyl ethylenediamine(ND)was used as collector, single mineral flotation and artificial mixed mineral(hematite and quartz were mixed at a mass ratio of 3:2) separation were conducted in the laboratory. Experimental results indicated that addition of butanol could improve the collecting performance of ND on quartz and enhance the floatability of quartz. Best flotation recovery of quartz was obtained when butanol was mixed with ND at a mass ratio of 1:1. Moreover, the molecular structure of alcohols had a significant effect on mineral recovery. Best separation efficiency could be obtained when tert-butanol was added as it had the largest cross-sectional area. Zeta potential measurements indicated that alcohols could strengthen electrostatic adsorption between quartz and collector. Molecular dynamic simulations revealed that co-adsorption of alcohols along with ND had taken place on the quartz surface, and ND/tert-butyl combinations were more easily absorbed on the quartz surface.展开更多
The floatability of andalusite and quartz was studied using sodium petroleum sulfonate as collector, being successfully applied in the real ore separation. The collecting performance on minerals was interpreted by mea...The floatability of andalusite and quartz was studied using sodium petroleum sulfonate as collector, being successfully applied in the real ore separation. The collecting performance on minerals was interpreted by means of zeta potential measurement and infrared spectroscopic analysis. The single mineral experiments showed that andalusite got good floatability in acidic pH region while quartz exhibited very poor floatability in the whole pH range. At pH 3, the presence of Fe3+ obviously activated quartz, causing the identical flotation behavior of the two minerals, and calcium lignosulphonate exhibited good selective inhibition to quartz. The real ore test results showed that andalusite concentrate with 53.46% Al2O3 and quartz concentrate with 92.74% SiO2 were obtained. The zeta potential and infrared spectroscopic analysis results indicated that chemical adsorption occurred between sodium petroleum sulfonate and andalusite.展开更多
A hybrid process consisting of flotation and magnetic separation has been developed to concentrate multi-phase rare earth minerals associated with a carbonatite ore that contains a significant amount of niobium. The d...A hybrid process consisting of flotation and magnetic separation has been developed to concentrate multi-phase rare earth minerals associated with a carbonatite ore that contains a significant amount of niobium. The deposit is known to contain at least 15 different rare earth minerals identified as silicocarbonatite, magnesiocarbonatite, ferrocarbonatites, calciocarbonatite, REE/Nb ferrocarbonatite, phosphates and niobates. Although no collector exists to float all the different rare earth minerals, the hydroxamic acid-based collectors have shown adequate efficiency in floating most of these minerals. 92% recovery of total rare earth oxide (TREO) and niobium in 45% mass was possible at d<sub>80</sub> of <65 microns grind size. It was also possible to reduce the mass pull to 28%, but TREO and Nb’s recovery dropped to 85%. Calcination of the concentrate followed by quenching and fine grinding to <25 μm allowed upgrading the flotation concentrate by magnetic separation. It was demonstrated that at least 87% TREO and 85% Nb could be recovered in 16% of the feed mass. The paper discusses the overall concept of the flowsheet and the experimental strategies that led to this process.展开更多
Rare earth resources are relatively scarce worldwide, but their global consumption is increasing year-by-year. At present, China has about 36% of the global rare earth reserves, but provides 90% of the world's supply...Rare earth resources are relatively scarce worldwide, but their global consumption is increasing year-by-year. At present, China has about 36% of the global rare earth reserves, but provides 90% of the world's supply, which has generally met world demand and promoted the development of the world economy. In order to continuously and stably supply rare earths to international markets, the Chinese Government has financially supported the Institute of Multipurpose Utilization of Mineral Resources within the China Geological Survey to study the utilization of low-grade rare earth ores. Following many years of experimental research, the project has developed a new technology entitled "Flotation to Form Agglomerates and then Magnetic Separation", which will bring a technological revolution to the world's light rare earth ore dressing.展开更多
Recycling waste frying oils for the synthesis of flotation reagents presents a promising avenue for sustainable waste management.Moreover,it offers a cost-effective solution for crafting a specialized collector design...Recycling waste frying oils for the synthesis of flotation reagents presents a promising avenue for sustainable waste management.Moreover,it offers a cost-effective solution for crafting a specialized collector designed to efficiently remove carbonates and enhance phosphate enrichment in froth flotation processes.This study focuses on the synthesis of an anionic collector using the saponification reaction of a frying oil sample,subsequently applied to the flotation of calcite and dolomite.To elucidate the adsorption mechanisms of the frying oil collector(FrOC)and sodium oleate,a reference collector,on fluorapatite,calcite,dolomite,and quartz surfaces,comprehensive experiments were conducted,including zeta potential measurements and Fourier transform infrared spectroscopy.Results revealed diverse adsorption affinities of the molecules towards these minerals.To assess the practical performance of the collector,flotation tests were conducted using a natural phosphate ore mixture,employing a BoxBehnken experimental design.Notably,under optimized conditions(pH 9,1000 g/t of FrOC,3.5 min of conditioning,and 6 min of flotation),FrOC exhibited excellent performance,with calcite and dolomite recoveries exceeding 80%,while apatite recovery in the concentrate fraction remained below 10%.This work exemplifies both circular economy practices and the distinctive approach to sustainable mineral processing.展开更多
Reverse flotation studies on magnetite samples have revealed that the use of starch as a depressant of Fe-oxides has a hydrophilic effect on the surface of Fe-bearing silicates and significantly decreases Fe in the si...Reverse flotation studies on magnetite samples have revealed that the use of starch as a depressant of Fe-oxides has a hydrophilic effect on the surface of Fe-bearing silicates and significantly decreases Fe in the silica-rich stream when used in combination with an amine (Lilaflot D817M). In this study, the effect of reverse flotation on the optimization of products obtained fi'om magnetic separation was inves- tigated. Two different magnetic samples, zones 1 and 2, were milled to 〈75 btm and then subjected to low intensity magnetic separation (LIMS). The LIMS test conducted on the 〈75 ~m shown an upgrade of 46.40wt% Fe, 28.40wt% SiO2 and 2.61wt% MnO for zone 1 and 47.60wt% Fe, 29.17wt% SiO2 and 0.50wt% MnO for zone 2. Further milling of the ore to 〈25 ~tm resulted in a higher magnetic-rich product after magnetic separation. Reverse flotation tests were conducted on the agitated magnetic concentrate feed, and the result shows a significant upgrade of Fe compared to that obtained from the non-agitated feed. Iron concentrations greater than 69%, and SiO2 concentrations less than 2% with overall magnetite recoveries greater than 67% and 71% were obtained for zones 1 and 2, respectively.展开更多
Selective recovery of chalcopyrite–galena ore by flotation remains a challenging issue.The development of highly efficient,low-cost,and environmentally friendly depressants for this flotation is necessary because mos...Selective recovery of chalcopyrite–galena ore by flotation remains a challenging issue.The development of highly efficient,low-cost,and environmentally friendly depressants for this flotation is necessary because most of available reagents(e.g.,K_2Cr_2O_4)are expensive and adversely affect the environment.In this study,ferric chromium lignin sulfonate(FCLS),which is a waste-product from the paper and pulp industry,was introduced as a selective depressant for galena with butyl xanthate(BX)as a collector.Results show that the residue recovery of Pb in Cu concentrate was substantially reduced to 4.73%using FCLS compared with 10.71%using the common depressant K_2Cr_2O_4.The underlying mechanisms were revealed using zeta-potential measurements and X-ray photoelectron spectroscopy(XPS).Zeta-potential measurements revealed that FCLS was more efficiently absorbed onto galena than onto chalcopyrite.XPS measurements further suggested that FCLS enhanced the surface oxidation of galena but prevented that of chalcopyrite.Thus,FCLS could be a potential candidate as a depressant for chalcopyrite–galena flotation because of its low cost and its lack of detrimental effects on the environment.展开更多
基金financial support from the National Natural Science Foundation of China(Nos.91962223,52104287,U2067201)Hubei Key Laboratory for Efficient Utilization and Agglomeration of Metallurgic Mineral Resources and Open Foundation of State Key Laboratory of Mineral Processing,China(No.BGRIMM-KJSKL-2022-14)。
文摘A novel hydroxamic acid,N-hydroxy-9,10-epoxy group-octadecanamide(N-OH-9,10-O-ODA),was synthesised by modifying the structure of oleic acid.The carboxyl group of oleic acid was converted into an N-hydroxy amide group,and an epoxy group was introduced into its structure.N-OH-9,10-O-ODA was used as a novel collector in the flotation separation of spodumene from one of its associated gangue minerals,specifically albite.N-OH-9,10-O-ODA exhibits remarkable selectivity,with a stronger affinity for collecting spodumene particles compared to albite particles.Zeta potential measurements and X-ray photoelectron spectroscopic analysis reveal that the adsorption quantity of N-OH-9,10-O-ODA on spodumene surface is comparable to that on albite surface.First-principles calculations demonstrate the diverse adsorption configurations of N-OH-9,10-O-ODA on surfaces of spodumene and albite,leading to its distinct collecting abilities for spodumene and albite particles.
基金supported by the National Natural Science Foundation of China (No.52164022).
文摘This paper proposes luteolin(LUT)as a novel depressant for the flotation-based separation of scheelite and calcite in a sodium oleate(NaOL)system.The suitability of LUT as a calcite depressant is confirmed through micro-flotation testing.At pH=9,with LUT concentration of 50 mg·L^(-1) and NaOL concentration of 50 mg·L^(-1),scheelite recovery reaches 80.3%.Calcite,on the other hand,exhibits a recovery rate of 17.6%,indicating a significant difference in floatability between the two minerals.Subsequently,the surface modifica-tions of scheelite and calcite following LUT treatment are characterized using adsorption capacity testing,Zeta potential analysis,Fourier transform infrared spectroscopy(FT-IR),X-ray photoelectron spectroscopy(XPS),and atomic force microscopy(AFM).The study in-vestigates the selective depressant mechanism of LUT on calcite.Adsorption capacity testing and Zeta potential analysis demonstrate sub-stantial absorption of LUT on the surface of calcite,impeding the further adsorption of sodium oleate,while its impact on scheelite is min-imal.FT-IR and XPS analyses reveal the selective adsorption of LUT onto the surface of calcite,forming strong chemisorption bonds between the hydroxyl group and calcium ions present.AFM directly illustrates the distinct adsorption densities of LUT on the two miner-al types.Consequently,LUT can effectively serve as a depressant for calcite,enabling the successful separation of scheelite and calcite.
基金the General Program of the National Natural Science Foundation of China(Nos.51974064,52174239)the National Key R&D Program of China(No.2021YFC2902400)the Outstanding Postdoctoral Program of Jiangsu Province,China(No.2022ZB521).
文摘To achieve efficient flotation separation of brucite and calcite,flotation separation experiments were conducted on two minerals using dodecylamine(DDA)as the collector and potassium dihydrogen phosphate(PDP)as the regulator.The action mechanism of DDA and PDP was explored through contact angle measurement,zeta potential detection,solution chemistry calculation,FTIR analysis,and XPS detection.The flotation results showed that when DDA dosage was 35 mg/L and PDP dosage was 40 mg/L,the maximum floating difference between brucite and calcite was 79.81%,and the selectivity separation index was 6.46.The detection analysis showed that the main dissolved component HPO_(4)^(2−)of PDP is selectively strongly adsorbed on the Ca site on the surface of calcite,promoting the adsorption of the main dissolved component RNH_(3)^(+)of DDA on calcite surface,while brucite is basically not affected by PDP.Therefore,PDP is an effective regulator for the reverse flotation separation of brucite and calcite in DDA system.
基金supported by the National Natural Science Foundation of China (Nos.51974064,52174239,and 52374259)the Open Project of the Key Laboratory of Solid Waste Treatment and Resource Utiliza-tion of the Ministry of Education,China (No.23kfgk02).
文摘Flotation separation of magnesite and its calcium-containing carbonate minerals is a difficult problem.Recently,new regulat-ors have been proposed for magnesite flotation decalcification,although traditional regulators such as tannin,water glass,sodium carbon-ate,and sodium hexametaphosphate are more widely used in industry.However,they are rarely used as the main regulators in research because they perform poorly in magnesite and dolomite single-mineral flotation tests.Inspired by the limonite presedimentation method and the addition of a regulator to magnesite slurry mixing,we used a tannin pretreatment method for separating magnesite and dolomite.Microflotation experiments confirmed that the tannin pretreatment method selectively and largely reduces the flotation recovery rate of dolomite without affecting the flotation recovery rate of magnesite.Moreover,the contact angles of the tannin-pretreated magnesite and dolomite increased and decreased,respectively,in the presence of NaOl.Zeta potential and Fourier transform infrared analyses showed that the tannin pretreatment method efficiently hinders NaOl adsorption on the dolomite surface but does not affect NaOl adsorption on the magnesite surface.X-ray photoelectron spectroscopy and density functional theory calculations confirmed that tannin interacts more strongly with dolomite than with magnesite.
基金support from the Project of Zhongyuan Critical Metals Laboratory(No.GJJSGFYQ202334)Natural Science Foundation of Henan Province(No.242300420002)+1 种基金National key research and development program(No.2020YFC1908804)National Natural Science Foundation of China(No.51804275).Moreover,we also thank Modern Analysis and Gene Sequencing Centre in Zhengzhou University.
文摘A novel small molecule depressant(M-DEP)was used to separate chalcopyrite and molybdenite via flotation.The results showed that M-DEP had an excellent selective depression on molybdenite,while had little effect on the flotation of chalcopyrite.The adsorption capacity of M-DEP on the surface of molybdenite was greater than that on chalcopyrite surface.The adsorption of M-DEP reduced the floatability of molybdenite and had less effect on the floatability of chalcopyrite,which was due to its different adsorption modes on the surface of the two minerals.Furthermore,the interaction between chalcopyrite and M-DEP was mainly chemical interaction,and almost all of the adsorbed M-DEP molecules were removed and replaced by sodium butyl xanthate(SBX).By contrast,hydrophobic interaction was the main way in which M-DEP was adsorbed on the molybdenite surface with little chemical interaction,which was less interfered by SBX addition.Therefore,M-DEP had a super selective depression on molybdenite.The study provided a novel depressant and approach for the deep separation of chalcopyrite and molybdenite via flotation.
基金supported by the National Natural Science Foundation of China(Nos.52004335 and 52204298)the National Natural Science Foundation of Hunan Province,China(No.2023JJ20071)the Science and Technology Innovation Program of Hunan Province,China(No.2023RC3067).
文摘As a cornerstone of the national economy,the iron and steel industry generates a significant amount of sintering dust containing both valuable lead resources and deleterious elements.Flotation is a promising technique for lead recovery from sintering dust,but efficient separation from Fe_(2)O_(3) is still challenging.This study investigated the cooperative effect of sodium lauryl sulfate(SLS,C_(12)H_(25)SO_(4)Na)and sodium pyrophosphate(SPP,Na_(4)P_(2)O_(7))on the selective flotation of lead oxide minerals(PbOHCl and PbSO_(4))from hematite(Fe_(2)O_(3)).Optimal flotation conditions were first identified,resulting in high recovery of lead oxide minerals while inhibiting Fe_(2)O_(3) flotation.Zeta potential measurements,Fourier transform infrared spectroscopy(FT-IR)analysis,adsorption capacity analysis,and X-ray photoelectron spectroscopy(XPS)studies offer insights into the adsorption behaviors of the reagents on mineral surfaces,revealing strong adsorption of SLS on PbOHCl and PbSO_(4) surfaces and remarkable adsorption of SPP on Fe_(2)O_(3).The proposed model of reagent adsorption on mineral surfaces illustrates the selective adsorption behavior,highlighting the pivotal role of reagent adsorption in the separation process.These findings contribute to the efficient and environmentally friendly utilization of iron ore sintering dust for lead recovery,paving the way for sustainable resource management in the iron and steel industry.
基金financially supported by the Yunnan Major Scientific and Technological Projects,China (No.202202AG050015)the National Natural Science Foundation of China (No.51464029)。
文摘The flotation separation of Cu–Fe sulfide minerals at low alkalinity can be achieved using selective depressants.In the flotation system of Cu–Fe sulfide minerals,depressants usually preferentially interact with the pyrite surface to render the mineral surface hydrophilic and hinder the adsorption of the collector.This review summarizes the advances in depressants for the flotation separation of Cu–Fe sulfide minerals at low alkalinity.These advances include use of inorganic depressants (oxidants and sulfur–oxygen compounds),natural polysaccharides (starch,dextrin,konjac glucomannan,and galactomannan),modified polymers (carboxymethyl cellulose,polyacrylamide,lignosulfonate,and tricarboxylate sodium starch),organic acids (polyglutamic acid,sodium humate,tannic acid,pyrogallic acid,salicylic acid,and lactic acid),sodium dimethyl dithiocarbamate,and diethylenetriamine.The potential application of specific inorganic and organic depressants in the flotation separation of Cu–Fe sulfide minerals at low alkalinity is reviewed.The advances in the use of organic depressants with respect to the flotation separation of Cu–Fe sulfide minerals are comprehensively detailed.Additionally,the depression performances and mechanisms of different types of organic depressants on mineral surfaces are summarized.Finally,several perspectives on depressants vis-à-vis flotation separation of Cu–Fe sulfide minerals at low alkalinity are proposed.
基金financially supported by the National Natural Science Foundation of China(U20A20150)the National Key Research and Development Program of China(2018YFC1903802)+1 种基金the Youth Scientific Research Fund of Qinghai University(2022QGY-4)the Kunlun Talent Program of Qinghai Province。
文摘Layered double hydroxides(LDHs)have been shown to be effective adsorbents for boron.However,solid-liquid separation is still a problem when separating boron from industrial radioactive waste liquid.In this research,three types of Mg-Al-LDHs including Mg-Al-LDH(NO_(3)^(-)),Mg-Al-LDH(Cl^(-))and Mg-Al-LDH(SO_(4)^(2-))were applied to adsorb boron,and moreover sodium dodecylbenzenesulfonate(SDBS)was used to float the LDH particles from aqueous solution after boron adsorption.The results showed that 60 min was sufficient for the equilibrium adsorption of the three LDHs.The boron adsorption capacity of three LDHs was determined as follows:Mg-Al-LDH(NO_(3)^(-))>Mg-Al-LDH(Cl^(-))>Mg-Al-LDH(SO_(4)^(2-)),and was 2.0,0.98 and 0.2 mmol·g^(-1),each ranging from 0 to 80 mmol·L^(-1)with the initial boron concentration.The efficiency of boron removal by Mg-Al-LDH(NO_(3)^(-))and SDBS can reach up to 89.7%.Furthermore,the boron flotation mechanism of SDBS and LDHs has been studied,since SDBS as a flotation agent can react with LDHs and penetrate into the interlayer of LDHs in addition to electrostatic attraction.Therefore,LDHs in solution can be floated onto the foam layer to be separated from the solution,and the clarified solution was obtained.The method is simple and promising for boron removal from aqueous solution.
基金the National Natural Science Foundation of China(Nos.52204298 and 52004335)the National Key R&D Program of China(Nos.2022YFC2904502 and 2022YFC2904501)+1 种基金the Major Science and Technology Projects in Yunnan Province(No.202202AB080012)the Science Research Initiation Fund of Central South University(No.202044019).
文摘The efficient separation of chalcopyrite(CuFeS2)and galena(PbS)is essential for optimal resource utilization.However,find-ing a selective depressant that is environmentally friendly and cost effective remains a challenge.Through various techniques,such as mi-croflotation tests,Fourier transform infrared spectroscopy,scanning electron microscopy(SEM)observation,X-ray photoelectron spec-troscopy(XPS),and Raman spectroscopy measurements,this study explored the use of ferric ions(Fe^(3+))as a selective depressant for ga-lena.The results of flotation tests revealed the impressive selective inhibition capabilities of Fe^(3+)when used alone.Surface analysis showed that Fe^(3+)significantly reduced the adsorption of isopropyl ethyl thionocarbamate(IPETC)on the galena surface while having a minimal impact on chalcopyrite.Further analysis using SEM,XPS,and Raman spectra revealed that Fe^(3+)can oxidize lead sulfide to form compact lead sulfate nanoparticles on the galena surface,effectively depressing IPETC adsorption and increasing surface hydrophilicity.These findings provide a promising solution for the efficient and environmentally responsible separation of chalcopyrite and galena.
基金the financial support from the National Key Research and Development Program of China(No.2018YFC1903403)Young Elite Scientists Sponsorship Program by CAST(No.2022QNRC001).
文摘Inhibitors are important for flotation separation of quartz and feldspar.In this study,a novel combined inhibitor was used to separate quartz and feldspar in near-neutral pulp.Selective inhibition of the combined inhibitor was assessed by micro-flotation experiments.And a series of detection methods were used to detect differences in the surface properties of feldspars and quartz after flotation reagents and put forward the synergistic strengthening mechanism.The outcomes were pointed out that pre-mixing combined inhibitors were more effective than the addition of Ca^(2+)and SS in sequence under the optimal proportion of 1:5.A concentrate from artificial mixed minerals that was characterized by a high quartz grade and a high recovery was acquired,and was found to be 90.70wt% and 83.70%,respectively.It was demonstrated that the combined inhibitor selectively prevented the action of the collector and feldspar from Fourier-transform infrared(FT-IR)and adsorption capacity tests.The results of X-ray photoelectron spectroscopy(XPS)indicated that Ca^(2+)directly interacts with the surface of quartz to increase the adsorption of collectors.In contrast,the chemistry property of Al on the feldspar surface was altered by combined inhibitor due to Na^(+)and Ca^(2+)taking the place of K^(+),resulting in the composite inhibitor forms a hydrophilic structure,which prevents the adsorption of the collector on the surface of feldspar by interacting with the Al active site.The combination of Ca^(2+)and SS synergically strengthens the difference of collecting property between quartz and feldspar by collector,thus achieving the effect of efficient separation.A new strategy for flotation to separate quartz from feldspar in near-neutral pulp was provided.
基金supported by the Youth Science Foundation of China(No.52004333)the Key Laboratory of Hunan Province for Clean and Efficiency Utilization of Strategic Calcium-containing Mineral Resources(No.2018TP1002).
文摘The flotation separation of magnesite from calcium-containing minerals has always been a difficult subject in minerals processing.This work studied the inhibition effects of carboxymethyl cellulose(CMC),sodium lignosulphonate,polyaspartic acid(PASP)and sodium silicate on flotation behaviors of magnesite,dolomite and calcite,providing guidance for the development of reagents in magnesite flotation.The micro-flotation results showed that among these four depressants,sodium silicate presented the strongest selectivity due to the highest recovery difference,and the flotation separation of magnesite from dolomite and calcite could be achieved by using sodium silicate as the depressant.Contact angle measurement indicated that the addition of sodium silicate caused the largest differences in surface wettability of the three minerals,which was in line with micro-flotation tests.Furthermore,zeta potential test,the Fourier transform infrared(FT-IR)spectroscopy and atomic force microscope(AFM)imaging were used to reveal the inhibition mechanism of sodium silicate.The results indicated that the dominated component SiO(OH)3of sodium silicate could adsorb on minerals surfaces,and the adsorption of sodium silicate hardly affected the adsorption of NaOL on magnesite surface,but caused the reduction of NaOL adsorption on dolomite and calcite surfaces,thereby increasing the flotation selectivity.
基金supported by Yunnan Major Scientific and Technological Projects,China(No.202202AG050015)National Natural Science Foundation of China(No.51504109)。
文摘The activation properties of ammonium oxalate on the flotation of pyrite and arsenopyrite in the lime system were studied in this work.Single mineral flotation tests showed that the ammonium oxalate strongly activated pyrite in high alkalinity and high Ca^(2+)system,whereas arsenopyrite was almost unaffected.In mineral mixtures tests,the recovery difference between pyrite and arsenopyrite after adding ammonium oxalate is more than 85%.After ammonium oxalate and ethyl xanthate treatment,the hydrophobicity of pyrite increased significantly,and the contact angle increased from 66.62°to 75.15°and then to 81.21°.After ammonium oxalate treatment,the amount of ethyl xanthate adsorption on the pyrite surface significantly increased and was much greater than that on the arsenopyrite surface.Zeta potential measurements showed that after activation by ammonium oxalate,there was a shift in the zeta potential of pyrite to more negative values by adding xanthate.X-ray photoelectron spectroscopy test showed that after ammonium oxalate treatment,the O 1s content on the surface of pyrite decreased from 44.03%to 26.18%,and the S 2p content increased from 14.01%to 27.26%,which confirmed that the ammonium oxalatetreated pyrite surface was more hydrophobic than the untreated surface.Therefore,ammonium oxalate may be used as a selective activator of pyrite in the lime system,which achieves an efficient flotation separation of S-As sulfide ores under high alkalinity and high Ca2+concentration conditions.
基金the National Natural Science Foundation of China(Nos.51974364,51904339,52074355)the 13th Five-Year National Key R&D Program of China(No.2020YFC1909203)。
文摘Lime(CaO)and sodium humate(NaHA)were used as the combined depressant for arsenopyrite pre-treated by CuSO_(4) and butyl xanthate.Micro-flotation tests show that the combined depressant CaO and NaHA achieved the selective depression of arsenopyrite.Closed-circuit lab-scale test results indicate that the synergistic effect of CaO+NaHA achieved a satisfactory flotation separation of sphalerite and arsenopyrite,for which the Zn grade and recovery of Zn concentrate were 51.21%and 92.21%,respectively.Contact angle measurements,adsorption amount measurements and X-ray photoelectron spectroscopy analysis indicate that the dissolved calcium species(mainly as Ca(2+))were adsorbed on the mineral surfaces,thereby promoting NaHA adsorption.Moreover,the surface of the arsenopyrite absorbed more amount of calcium species and NaHA than that of the sphalerite,thereby accounting for the strong hydrophilic surface of arsenopyrite.The adsorption of NaHA on arsenopyrite was mainly chemical adsorption through its carboxyl groups and Ca atoms,whereas that on sphalerite surface was relatively weak.
基金financial support of the National Natural Science Foundation of China (No.51374051)the Fundamental Research Fund for the Central Universities (No.N130401008)
文摘In order to investigate the effect of butanol on quartz flotation when N-dodecyl ethylenediamine(ND)was used as collector, single mineral flotation and artificial mixed mineral(hematite and quartz were mixed at a mass ratio of 3:2) separation were conducted in the laboratory. Experimental results indicated that addition of butanol could improve the collecting performance of ND on quartz and enhance the floatability of quartz. Best flotation recovery of quartz was obtained when butanol was mixed with ND at a mass ratio of 1:1. Moreover, the molecular structure of alcohols had a significant effect on mineral recovery. Best separation efficiency could be obtained when tert-butanol was added as it had the largest cross-sectional area. Zeta potential measurements indicated that alcohols could strengthen electrostatic adsorption between quartz and collector. Molecular dynamic simulations revealed that co-adsorption of alcohols along with ND had taken place on the quartz surface, and ND/tert-butyl combinations were more easily absorbed on the quartz surface.
文摘The floatability of andalusite and quartz was studied using sodium petroleum sulfonate as collector, being successfully applied in the real ore separation. The collecting performance on minerals was interpreted by means of zeta potential measurement and infrared spectroscopic analysis. The single mineral experiments showed that andalusite got good floatability in acidic pH region while quartz exhibited very poor floatability in the whole pH range. At pH 3, the presence of Fe3+ obviously activated quartz, causing the identical flotation behavior of the two minerals, and calcium lignosulphonate exhibited good selective inhibition to quartz. The real ore test results showed that andalusite concentrate with 53.46% Al2O3 and quartz concentrate with 92.74% SiO2 were obtained. The zeta potential and infrared spectroscopic analysis results indicated that chemical adsorption occurred between sodium petroleum sulfonate and andalusite.
文摘A hybrid process consisting of flotation and magnetic separation has been developed to concentrate multi-phase rare earth minerals associated with a carbonatite ore that contains a significant amount of niobium. The deposit is known to contain at least 15 different rare earth minerals identified as silicocarbonatite, magnesiocarbonatite, ferrocarbonatites, calciocarbonatite, REE/Nb ferrocarbonatite, phosphates and niobates. Although no collector exists to float all the different rare earth minerals, the hydroxamic acid-based collectors have shown adequate efficiency in floating most of these minerals. 92% recovery of total rare earth oxide (TREO) and niobium in 45% mass was possible at d<sub>80</sub> of <65 microns grind size. It was also possible to reduce the mass pull to 28%, but TREO and Nb’s recovery dropped to 85%. Calcination of the concentrate followed by quenching and fine grinding to <25 μm allowed upgrading the flotation concentrate by magnetic separation. It was demonstrated that at least 87% TREO and 85% Nb could be recovered in 16% of the feed mass. The paper discusses the overall concept of the flowsheet and the experimental strategies that led to this process.
文摘Rare earth resources are relatively scarce worldwide, but their global consumption is increasing year-by-year. At present, China has about 36% of the global rare earth reserves, but provides 90% of the world's supply, which has generally met world demand and promoted the development of the world economy. In order to continuously and stably supply rare earths to international markets, the Chinese Government has financially supported the Institute of Multipurpose Utilization of Mineral Resources within the China Geological Survey to study the utilization of low-grade rare earth ores. Following many years of experimental research, the project has developed a new technology entitled "Flotation to Form Agglomerates and then Magnetic Separation", which will bring a technological revolution to the world's light rare earth ore dressing.
基金financially supported through the research program between OCP Group and UM6P under the specific agreement AS34-flotation project
文摘Recycling waste frying oils for the synthesis of flotation reagents presents a promising avenue for sustainable waste management.Moreover,it offers a cost-effective solution for crafting a specialized collector designed to efficiently remove carbonates and enhance phosphate enrichment in froth flotation processes.This study focuses on the synthesis of an anionic collector using the saponification reaction of a frying oil sample,subsequently applied to the flotation of calcite and dolomite.To elucidate the adsorption mechanisms of the frying oil collector(FrOC)and sodium oleate,a reference collector,on fluorapatite,calcite,dolomite,and quartz surfaces,comprehensive experiments were conducted,including zeta potential measurements and Fourier transform infrared spectroscopy.Results revealed diverse adsorption affinities of the molecules towards these minerals.To assess the practical performance of the collector,flotation tests were conducted using a natural phosphate ore mixture,employing a BoxBehnken experimental design.Notably,under optimized conditions(pH 9,1000 g/t of FrOC,3.5 min of conditioning,and 6 min of flotation),FrOC exhibited excellent performance,with calcite and dolomite recoveries exceeding 80%,while apatite recovery in the concentrate fraction remained below 10%.This work exemplifies both circular economy practices and the distinctive approach to sustainable mineral processing.
基金the financial assistance of the National Research Foundation(NRF)University of the Witwatersrand,Johannesburg,South Africa
文摘Reverse flotation studies on magnetite samples have revealed that the use of starch as a depressant of Fe-oxides has a hydrophilic effect on the surface of Fe-bearing silicates and significantly decreases Fe in the silica-rich stream when used in combination with an amine (Lilaflot D817M). In this study, the effect of reverse flotation on the optimization of products obtained fi'om magnetic separation was inves- tigated. Two different magnetic samples, zones 1 and 2, were milled to 〈75 btm and then subjected to low intensity magnetic separation (LIMS). The LIMS test conducted on the 〈75 ~m shown an upgrade of 46.40wt% Fe, 28.40wt% SiO2 and 2.61wt% MnO for zone 1 and 47.60wt% Fe, 29.17wt% SiO2 and 0.50wt% MnO for zone 2. Further milling of the ore to 〈25 ~tm resulted in a higher magnetic-rich product after magnetic separation. Reverse flotation tests were conducted on the agitated magnetic concentrate feed, and the result shows a significant upgrade of Fe compared to that obtained from the non-agitated feed. Iron concentrations greater than 69%, and SiO2 concentrations less than 2% with overall magnetite recoveries greater than 67% and 71% were obtained for zones 1 and 2, respectively.
基金funding from the National 111 Project (No.B14034)Collaborative Innovation Centre of Hunan Province for Clean and Efficient Utilization of Strategic Metal Mineral Resources+1 种基金the National Science and Technology Support Project of ChinaNational Natural Science Foundation of China (Nos.51104179 and 51374247)
文摘Selective recovery of chalcopyrite–galena ore by flotation remains a challenging issue.The development of highly efficient,low-cost,and environmentally friendly depressants for this flotation is necessary because most of available reagents(e.g.,K_2Cr_2O_4)are expensive and adversely affect the environment.In this study,ferric chromium lignin sulfonate(FCLS),which is a waste-product from the paper and pulp industry,was introduced as a selective depressant for galena with butyl xanthate(BX)as a collector.Results show that the residue recovery of Pb in Cu concentrate was substantially reduced to 4.73%using FCLS compared with 10.71%using the common depressant K_2Cr_2O_4.The underlying mechanisms were revealed using zeta-potential measurements and X-ray photoelectron spectroscopy(XPS).Zeta-potential measurements revealed that FCLS was more efficiently absorbed onto galena than onto chalcopyrite.XPS measurements further suggested that FCLS enhanced the surface oxidation of galena but prevented that of chalcopyrite.Thus,FCLS could be a potential candidate as a depressant for chalcopyrite–galena flotation because of its low cost and its lack of detrimental effects on the environment.