Flotation de silica from the diasporic bauxite is one of the key basic research projects. It aimed to reveal the scientific mechanism between the crystal structure and surface properties, structure properties of effec...Flotation de silica from the diasporic bauxite is one of the key basic research projects. It aimed to reveal the scientific mechanism between the crystal structure and surface properties, structure properties of effective flotation reagent as well as the solution chemistry of flotation and interfacial interactions in the flotation system of diaspore and aluminosilicate minerals. It will underlay the new technology of reverse flotation de silica. The technology is important to enhance the mass ratio of Al 2O 3 to SiO 2, decreasing the silica content and energy consumption in producing aluminum oxide and economically utilizing the diasporic bauxite in China.展开更多
Using cetyl trimethylammonium bromide (CTAB) as collector, the flotation de-silicating from diasporic-bauxite was investigated. And the Zeta potentials and contact-angles of silicate minerals and diaspore were also ...Using cetyl trimethylammonium bromide (CTAB) as collector, the flotation de-silicating from diasporic-bauxite was investigated. And the Zeta potentials and contact-angles of silicate minerals and diaspore were also stu-(died.)The results show that in the presence of 2×10-4 mol·L-1CTAB, the surface charges of pyrophyllite, kaolinite and illite become more positive, and the contact angles of these three silicates also increase evidently in the pH range of 2-8, but the Zeta potentials and contact angles of diaspore change little. So, the floatability of the four minerals is in the following order: pyrophyllite>kaolinite≈illite>diaspore. The open-circuit flotation results also show that a bauxite concentrate with m(Al2O3)/m(SiO2) over 9.3 and Al2O3 recovery over 76% can be obtained from diasporic-bauxite ore. The result of XRD of the bauxite concentrate shows that pyrophyllite is easier to be removed from diasporic-bauxite than illite and kaolinite due to its better floatability.展开更多
The zeta potential measurements show that the flotation separation of diaspore from kaolinite, illite and pyrophyllite could be achieved in the range of pH 46.5 with cationic collectors. A special quaternary ammonium ...The zeta potential measurements show that the flotation separation of diaspore from kaolinite, illite and pyrophyllite could be achieved in the range of pH 46.5 with cationic collectors. A special quaternary ammonium salts(DTAL) shows better selectivity than that the dodecyl amine(DDA) does for the flotation of three silicates. The closed circuit flotation results show that the reverse flotation de silicate can be achieved with DTAL as collector, a new inorganic reagent(SFL) as depressant and MIBC as frother to obtain a bauxite concentrate m (Al 2O 3)/ m (SiO 2) >10, Al 2O 3 recovery>86%).展开更多
The Sarcheshmeh copper flotation circuit is producing 5× 10^4 t copper concentrate per month with an averaging grade of 28% Cu in rougher, cleaner and recleaner stages. In recent years, with the increase in the o...The Sarcheshmeh copper flotation circuit is producing 5× 10^4 t copper concentrate per month with an averaging grade of 28% Cu in rougher, cleaner and recleaner stages. In recent years, with the increase in the open pit depth, the content of aluminosilicate minerals increased in plant feed and subsequently in flotation concentrate. It can motivate some problems, such as unwanted consumption of reagents, decreasing of the copper concentrate grade, increasing of Al2O3 and SiO2 in the copper concentrate, and needing a higher temperature in the smelting process. The evaluation of the composite samples related to the most critical working period of the plant shows that quartz, illite, biotite, chlorite, orthoclase, albeit, muscovite, and kaolinite are the major Al2O3 and SiO2 beating minerals that accompany chalcopyrite, chalcocite, and covellite minerals in the plant feed. The severe alteration to clay minerals was a general rule in all thin sections that were prepared from the plant feed. Sieve analysis of the flotation concentrate shows that Al2O3 and SiO2 bearing minerals in the flotation concentrate can be decreased by promoting the size reduction from 53 to 38 μm. Interlocking of the Al2O3 and SiO2 bearing minerals with chalcopyrite and chalcocite is the occurrence mechanism of silicate and aluminosilicate minerals in the flotation concentrate. The dispersed form of interlocking is predominant.展开更多
The electrochemical mechanism involved in the selective separation of chalcopyrite from galena was investigated by flotation and electrochemical methods in the presence of sodium sulfite and sodium silicate,respective...The electrochemical mechanism involved in the selective separation of chalcopyrite from galena was investigated by flotation and electrochemical methods in the presence of sodium sulfite and sodium silicate,respectively,as a single depressant and their mixture as a combined depressant.Flotation tests revealed that the floatability of chalcopyrite was unaffected by depressants and its recovery remained constant(>80%)within the studied dosage range.Galena flotation was severely depressed with descending depressing order as follows:combined depressant﹥sodium silicate﹥sodium sulfite.Electrochemical analysis confirmed the high affinity of depressants on the galena surface,resulting in the formation of hydrophilic species,such as lead sulfite,lead sulfate,and lead orthosilicate.The oxidation of chalcopyrite surface and depressants did not exhibit any signals;conversely,the self-oxidation of chalcopyrite was depressed.The results of cyclic voltammograms well agreed with flotation results,demonstrating that chalcopyrite primarily reacted with the collector O-isopropyl-N-ethyl thionocarbamate and that galena mostly reacted with depressants.展开更多
The recovery of iron from the screw classifier overflow slimes by direct flotation was studied. The relative effectiveness of sodium silicates with different silica-to-soda mole ratios as depressants for silica and si...The recovery of iron from the screw classifier overflow slimes by direct flotation was studied. The relative effectiveness of sodium silicates with different silica-to-soda mole ratios as depressants for silica and silicate bearing minerals was investigated. Silica-to-soda mole ratio and silicate dosage were found to have significant effect on the separation efficiency. The results show that an increase of Fe content in the concentrate is observed with concomitant reduction in SiO2 and A1203 levels when a particular type of sodium silicate at a proper dosage is used. The concentrate of 58.89wt% Fe, 4.68wt% SiO2, and 5.28wt% A1203 with the weight recovery of 38.74% and the metal recovery of 41.13% can be obtained from the iron ore slimes with 54.44wt% Fe, 6.72wt% SiO2, and 6.80wt% A1203, when NazSiO3 with a silica-to-soda mole ratio of 2.19 is used as a depressant at a feed rate of 0.2 kg/t.展开更多
Inhibitors are important for flotation separation of quartz and feldspar.In this study,a novel combined inhibitor was used to separate quartz and feldspar in near-neutral pulp.Selective inhibition of the combined inhi...Inhibitors are important for flotation separation of quartz and feldspar.In this study,a novel combined inhibitor was used to separate quartz and feldspar in near-neutral pulp.Selective inhibition of the combined inhibitor was assessed by micro-flotation experiments.And a series of detection methods were used to detect differences in the surface properties of feldspars and quartz after flotation reagents and put forward the synergistic strengthening mechanism.The outcomes were pointed out that pre-mixing combined inhibitors were more effective than the addition of Ca^(2+)and SS in sequence under the optimal proportion of 1:5.A concentrate from artificial mixed minerals that was characterized by a high quartz grade and a high recovery was acquired,and was found to be 90.70wt% and 83.70%,respectively.It was demonstrated that the combined inhibitor selectively prevented the action of the collector and feldspar from Fourier-transform infrared(FT-IR)and adsorption capacity tests.The results of X-ray photoelectron spectroscopy(XPS)indicated that Ca^(2+)directly interacts with the surface of quartz to increase the adsorption of collectors.In contrast,the chemistry property of Al on the feldspar surface was altered by combined inhibitor due to Na^(+)and Ca^(2+)taking the place of K^(+),resulting in the composite inhibitor forms a hydrophilic structure,which prevents the adsorption of the collector on the surface of feldspar by interacting with the Al active site.The combination of Ca^(2+)and SS synergically strengthens the difference of collecting property between quartz and feldspar by collector,thus achieving the effect of efficient separation.A new strategy for flotation to separate quartz from feldspar in near-neutral pulp was provided.展开更多
Flotation performance of a de-slimed(-150+53μm)Jordanian siliceous phosphate was evaluated in a batch laboratory flotation column 100 cm high and 5 cm inside diameter.The collector used during anionic flotation wa...Flotation performance of a de-slimed(-150+53μm)Jordanian siliceous phosphate was evaluated in a batch laboratory flotation column 100 cm high and 5 cm inside diameter.The collector used during anionic flotation was sodium oleate while an amine acetate(AEROMINE 3100C)was used for cationic flotation.Flotation comparison at different collector dosage,superficial gas velocity,and frother concentration showed that the maximum difference in performance between cationic and anionic flotation was obtained with these flotation parameters:30×10^(-6)(mg/L)frother concentration,250 g/t collector concentration,and 3.4 cm/s superficial gas velocity.At these operating conditions amine (cationic)flotation gave 7%higher flotation recovery,a 6%cleaner concentrate grade,and was 6%more efficient at removing silica.展开更多
A new synthetic reagent DPTUHP [diphenyl α-(3-phenylthioureido) hexylpbosphonate] containing a hydrocarbon chain nonpolar group, a thioureido, and a phosphonate easter chelating group, has proven to be an effective...A new synthetic reagent DPTUHP [diphenyl α-(3-phenylthioureido) hexylpbosphonate] containing a hydrocarbon chain nonpolar group, a thioureido, and a phosphonate easter chelating group, has proven to be an effective collector for the flotation of cerussite mineral. The synthetic method utilized the Mannich-type reaction of an N-monosubstituted thiourea, an aldehyde, and triphenyl phosphate in glacial acetic acid solution. The experimental results of flotation of the cerussite mineral show that the collector has stronger collecting ability and higher selectivity in a neutral and a slightly alkaline medium, especially in the pulp of pH=8. Using the measurements by infrared spectroscopy (IR) and X-ray photoelectron spectroscopy (XPS) of the cerussite mineral, the collector, as well as the cerussite treated with the collector, the flotation mechanism of cerussite has been discussed. It is concluded that the adsorption of collector on cerussite is a chemical adsorption through the electron donor atoms of the collector chelating the Pb ( Ⅱ ) of cerussite to form chelate.展开更多
The adsorption mechanism of O-isopropyl-S-[2-(hydroxyimino) propyl] dithiocarbonate ester(IPXPO) to chalcopyrite was investigated by using contact angle, in-situ atomic force microscopy(in-situ AFM), cyclic voltammetr...The adsorption mechanism of O-isopropyl-S-[2-(hydroxyimino) propyl] dithiocarbonate ester(IPXPO) to chalcopyrite was investigated by using contact angle, in-situ atomic force microscopy(in-situ AFM), cyclic voltammetry(CV) and X-ray photoelectron spectroscopy(XPS). The results of contact angle and in-situ AFM demonstrated that IPXPO adsorbed on chalcopyrite increases surface hydrophobicity and roughness. It was found by CV experiments that a layer passive film was formed. The results of XPS spectra further revealed that the thiol S atom, oxime N atom, and O atom in the IPXPO molecule might react with copper atoms to form Cu-S, Cu-N, and Cu-O bonds, respectively. An artificial mixed minerals flotation test indicated that under the condition of pH=6.79 and IPXPO initial concentration 5×10^(-5)mol/L, the flotation recovery of chalcopyrite reached about 90%, while for pyrite only 25%, suggesting that IPXPO is an excellent collector for flotation separation and enrichment of chalcopyrite.展开更多
Chlorite,as the most representative gangue mineral associated with specularite,of which the separation of these two minerals is difficult.This paper investigated the depression effect of taurine on specularite/chlorit...Chlorite,as the most representative gangue mineral associated with specularite,of which the separation of these two minerals is difficult.This paper investigated the depression effect of taurine on specularite/chlorite separation via flotation experiments,adsorption tests,contact angle measurements,Zeta potential detection,FT-IR measurements,and XPS analyses.The results of single mineral flotation indicated that chlorite could be depressed selectively by taurine with the recovery of less than 30%,but the floatability of specularite remains high with recovery rate of 81.77%at pH 10.The artificial mixed mineral flotation results confirmed the effectiveness of taurine as a depressant.Surface adsorption,contact angle,and Zeta potential detection revealed taurine primarily adsorbs on the chlorite surface,which hampered the DDA’s subsequent adsorption and results in the chlorite’s poor floatability.The FT-IR spectra and XPS analyses provided further proof that taurine adsorbed on chlorite surface as an electron donor,and part of the electrons transferred from the sulfonic acid group of taurine to metal ions during the adsorption process.In addition,the hydrogen bond between amino-group of taurine and O ions in chlorite surface was also formed in the adsorption process.Finally,optimized adsorption configurations of taurine on chlorite surfaces were proposed.展开更多
In flotation,metal ions possess significant roles that are usually fulfilled by either selectively activating or depressing the target minerals.Despite that tremendous efforts have been made to address the roles of me...In flotation,metal ions possess significant roles that are usually fulfilled by either selectively activating or depressing the target minerals.Despite that tremendous efforts have been made to address the roles of metal ions in flotation,it still lacks a comprehensive review,especially to compare various ions instead of focusing on a specific one.This review begins by elaborately categorizing the factors involved in affecting the roles of metal ions in flotation.After that,well-accepted mechanisms are updated and discussed from the ore type.Furthermore,typical approaches to explore the underlying mechanisms are emphasized,including traditional techniques such as micro-flotation,contact angle measurement,zeta potential measurement,and other recent prevailing methodologies,like computational method,solution chemistry calculation,and cyclic voltammetry.This work will pave the way to promote flotations via activities like selectively adding/reducing metal ions,choosing reagents,and regulating the slurry chemistry.展开更多
The flotation separation of magnesite from calcium-containing minerals has always been a difficult subject in minerals processing.This work studied the inhibition effects of carboxymethyl cellulose(CMC),sodium lignosu...The flotation separation of magnesite from calcium-containing minerals has always been a difficult subject in minerals processing.This work studied the inhibition effects of carboxymethyl cellulose(CMC),sodium lignosulphonate,polyaspartic acid(PASP)and sodium silicate on flotation behaviors of magnesite,dolomite and calcite,providing guidance for the development of reagents in magnesite flotation.The micro-flotation results showed that among these four depressants,sodium silicate presented the strongest selectivity due to the highest recovery difference,and the flotation separation of magnesite from dolomite and calcite could be achieved by using sodium silicate as the depressant.Contact angle measurement indicated that the addition of sodium silicate caused the largest differences in surface wettability of the three minerals,which was in line with micro-flotation tests.Furthermore,zeta potential test,the Fourier transform infrared(FT-IR)spectroscopy and atomic force microscope(AFM)imaging were used to reveal the inhibition mechanism of sodium silicate.The results indicated that the dominated component SiO(OH)3of sodium silicate could adsorb on minerals surfaces,and the adsorption of sodium silicate hardly affected the adsorption of NaOL on magnesite surface,but caused the reduction of NaOL adsorption on dolomite and calcite surfaces,thereby increasing the flotation selectivity.展开更多
Flotation is a complex multifaceted process that is widely used for the separation of finely ground minerals. The theory of froth flotation is complex and is not completely understood. This fact has been brought many ...Flotation is a complex multifaceted process that is widely used for the separation of finely ground minerals. The theory of froth flotation is complex and is not completely understood. This fact has been brought many monitoring challenges in a coal processing plant. To solve those challenges, it is important to understand the effect of different parameters on the fine particle separation, and control flotation performance for a particular system. This study is going to indicate the effect of various parameters (particle Characteristics and hydrodynamic conditions) on coal flotation responses (flotation rate constant and recovery) by different modeling techniques. A comprehensive coal flotation database was prepared for the statistical and soft computing methods. Statistical factors were used for variable selections. Results were in a good agreement with recent theoretical flotation investigations. Computational models accurately can estimate flotation rate constant and coal recovery (correlation coefficient 0.85, and 0.99, respectively). According to the results, it can be concluded that the soft computing models can overcome the complexity of process and be used as an expert system to control, and optimize parameters of coal flotation process.展开更多
To search a novel class of effective silicate mineral collectors,the Gemini quaternary ammonium salt surfactant(butane-α,ω-bis(dimethyl dodeculammonium bromide),12-4-12) and its corresponding conventional monomeric ...To search a novel class of effective silicate mineral collectors,the Gemini quaternary ammonium salt surfactant(butane-α,ω-bis(dimethyl dodeculammonium bromide),12-4-12) and its corresponding conventional monomeric surfactant(dedecyl trimethyl ammonium bromide,DTAB) were adopted to comparatively study the flotation behaviors of illite,pyrophyllite and kaolinite. Three silicate minerals with the Gemini surfactant as collector reveal floatability far better than with the corresponding traditional one. At pH 6,the best recoveries of illite,pyrophyllite and kaolinite with 3.5×10-4 mol/L 12-4-12 are 99.2%,91.7% and 99.6%,respectively. The fluorescence and contact angle measurement were also conducted for the further investigation of surfactants aggregation behavior and silicate mineral surface hydrophobic properties. FTIR spectra analysis and electrokinetic analysis show that the mechanism of adsorption of collector molecules on mineral surfaces is almost identical for the electronic attraction and hydrogen bonds effect. The superior collecting power of dimeric collector may be attributed primarily to its special structure and its essential properties.展开更多
The surface hydrophobization and flotation of a xanthate−hydroxamate collector toward copper oxide mineral were compared with the combined collectors of xanthate and hydroxamate through water contact angle(WCA)and mic...The surface hydrophobization and flotation of a xanthate−hydroxamate collector toward copper oxide mineral were compared with the combined collectors of xanthate and hydroxamate through water contact angle(WCA)and micro-flotation experiments.The results showed that S-[(2-hydroxyamino)-2-oxoethyl]-O-octyl-dithiocarbonate ester(HAOODE)exhibited stronger hydrophobization and better flotation performance to malachite(Cu2(OH)2CO3)than octyl-hydroxamic acid(OHA)and its combination with S-allyl-O-ethyl xanthate ester(AEXE).To understand the hydrophobic intensification mechanism of HAOODE to malachite,zeta potential,atomic force microscopy(AFM)and XPS measurements were carried out.The results recommended that malachite chemisorbed HAOODE to form Cu—HAOODE complexes in which the hydroxamate—(O,O)—Cu and—O—C(—S—Cu)—S—configurations co-existed.The co-adsorption of HAOODE’s hetero-difunctional groups was more stable than the single-functionalgroup adsorption of OHA and AEXE,which produced the“loop”structure and intensified the self-assembly alignment of HAOODE on malachite surfaces.In addition,the“h”shape steric orientation of the double hydrophobic groups in HAOODE facilitated stronger hydrophobization toward malachite than the“line”or“V”hydrophobic carbon chains of OHA or AEXE.Thus,HAOODE achieved the preferable flotation recovery of malachite particles in comparison with OHA and AEXE.展开更多
Experiments on the partitioning of Cu between different granitic silicate melts and the respective coexisting aqueous fluids have been performed under conditions of 850 ℃, 100 MPa and oxygen fugacity (fO2) buffered...Experiments on the partitioning of Cu between different granitic silicate melts and the respective coexisting aqueous fluids have been performed under conditions of 850 ℃, 100 MPa and oxygen fugacity (fO2) buffered at approaching Ni-NiO (NNO). Partition coefficients of Cu (Dcu = Cfluid/Cmelt) were varied with different alumina/alkali mole ratios [Al2O3/(Na2O + K2O), abbreviated as Al/ Alk], Na/K mole ratios, and SiO2 mole contents. The DCu increased from 1.28 ± 0.01 to 22.18 ±0.22 with the increase of Al/Alk mole ratios (ranging from 0.64 to 1.20) and Na/K mole ratios (ranging from 0.58 to 2.56). The experimental results also showed that Dcu was positively correlated with the HCl concentration of the starting fluid. The Dcu was independent of the SiO2 mole content in the range of SiO2 content considered. No Dcu value was less than 1 in our experiments at 850 ℃ and 100 MPa, indicating that Cu preferred to enter the fluid phase rather than the coexisting melt phase under most conditions in the melt-fluid system, and thus a significant amount of Cu could be transported in the fluid phase in the magmatichydrothermal environment. The results indicated that Cu favored partitioning into the aqueous fluid rather than the melt phase if there was a high Na/K ratio, Na-rich, peraluminous granitic melt coexisting with the high Cl^- fluid.展开更多
文摘Flotation de silica from the diasporic bauxite is one of the key basic research projects. It aimed to reveal the scientific mechanism between the crystal structure and surface properties, structure properties of effective flotation reagent as well as the solution chemistry of flotation and interfacial interactions in the flotation system of diaspore and aluminosilicate minerals. It will underlay the new technology of reverse flotation de silica. The technology is important to enhance the mass ratio of Al 2O 3 to SiO 2, decreasing the silica content and energy consumption in producing aluminum oxide and economically utilizing the diasporic bauxite in China.
文摘Using cetyl trimethylammonium bromide (CTAB) as collector, the flotation de-silicating from diasporic-bauxite was investigated. And the Zeta potentials and contact-angles of silicate minerals and diaspore were also stu-(died.)The results show that in the presence of 2×10-4 mol·L-1CTAB, the surface charges of pyrophyllite, kaolinite and illite become more positive, and the contact angles of these three silicates also increase evidently in the pH range of 2-8, but the Zeta potentials and contact angles of diaspore change little. So, the floatability of the four minerals is in the following order: pyrophyllite>kaolinite≈illite>diaspore. The open-circuit flotation results also show that a bauxite concentrate with m(Al2O3)/m(SiO2) over 9.3 and Al2O3 recovery over 76% can be obtained from diasporic-bauxite ore. The result of XRD of the bauxite concentrate shows that pyrophyllite is easier to be removed from diasporic-bauxite than illite and kaolinite due to its better floatability.
文摘The zeta potential measurements show that the flotation separation of diaspore from kaolinite, illite and pyrophyllite could be achieved in the range of pH 46.5 with cationic collectors. A special quaternary ammonium salts(DTAL) shows better selectivity than that the dodecyl amine(DDA) does for the flotation of three silicates. The closed circuit flotation results show that the reverse flotation de silicate can be achieved with DTAL as collector, a new inorganic reagent(SFL) as depressant and MIBC as frother to obtain a bauxite concentrate m (Al 2O 3)/ m (SiO 2) >10, Al 2O 3 recovery>86%).
文摘The Sarcheshmeh copper flotation circuit is producing 5× 10^4 t copper concentrate per month with an averaging grade of 28% Cu in rougher, cleaner and recleaner stages. In recent years, with the increase in the open pit depth, the content of aluminosilicate minerals increased in plant feed and subsequently in flotation concentrate. It can motivate some problems, such as unwanted consumption of reagents, decreasing of the copper concentrate grade, increasing of Al2O3 and SiO2 in the copper concentrate, and needing a higher temperature in the smelting process. The evaluation of the composite samples related to the most critical working period of the plant shows that quartz, illite, biotite, chlorite, orthoclase, albeit, muscovite, and kaolinite are the major Al2O3 and SiO2 beating minerals that accompany chalcopyrite, chalcocite, and covellite minerals in the plant feed. The severe alteration to clay minerals was a general rule in all thin sections that were prepared from the plant feed. Sieve analysis of the flotation concentrate shows that Al2O3 and SiO2 bearing minerals in the flotation concentrate can be decreased by promoting the size reduction from 53 to 38 μm. Interlocking of the Al2O3 and SiO2 bearing minerals with chalcopyrite and chalcocite is the occurrence mechanism of silicate and aluminosilicate minerals in the flotation concentrate. The dispersed form of interlocking is predominant.
基金Project(51374247)supported by the National Natural Science Foundation of ChinaProject(2015CX005)supported by Innovation Driven Plan of Central South University,China+1 种基金Project(B14034)supported by the National“111”Project,ChinaProject supported by the Open Sharing Fund for Large-scale Instruments and Equipment of Central South University and Collaborative Innovation Center for Clean and Efficient Utilization of Strategic Metal Mineral Resources,China。
文摘The electrochemical mechanism involved in the selective separation of chalcopyrite from galena was investigated by flotation and electrochemical methods in the presence of sodium sulfite and sodium silicate,respectively,as a single depressant and their mixture as a combined depressant.Flotation tests revealed that the floatability of chalcopyrite was unaffected by depressants and its recovery remained constant(>80%)within the studied dosage range.Galena flotation was severely depressed with descending depressing order as follows:combined depressant﹥sodium silicate﹥sodium sulfite.Electrochemical analysis confirmed the high affinity of depressants on the galena surface,resulting in the formation of hydrophilic species,such as lead sulfite,lead sulfate,and lead orthosilicate.The oxidation of chalcopyrite surface and depressants did not exhibit any signals;conversely,the self-oxidation of chalcopyrite was depressed.The results of cyclic voltammograms well agreed with flotation results,demonstrating that chalcopyrite primarily reacted with the collector O-isopropyl-N-ethyl thionocarbamate and that galena mostly reacted with depressants.
文摘The recovery of iron from the screw classifier overflow slimes by direct flotation was studied. The relative effectiveness of sodium silicates with different silica-to-soda mole ratios as depressants for silica and silicate bearing minerals was investigated. Silica-to-soda mole ratio and silicate dosage were found to have significant effect on the separation efficiency. The results show that an increase of Fe content in the concentrate is observed with concomitant reduction in SiO2 and A1203 levels when a particular type of sodium silicate at a proper dosage is used. The concentrate of 58.89wt% Fe, 4.68wt% SiO2, and 5.28wt% A1203 with the weight recovery of 38.74% and the metal recovery of 41.13% can be obtained from the iron ore slimes with 54.44wt% Fe, 6.72wt% SiO2, and 6.80wt% A1203, when NazSiO3 with a silica-to-soda mole ratio of 2.19 is used as a depressant at a feed rate of 0.2 kg/t.
基金the financial support from the National Key Research and Development Program of China(No.2018YFC1903403)Young Elite Scientists Sponsorship Program by CAST(No.2022QNRC001).
文摘Inhibitors are important for flotation separation of quartz and feldspar.In this study,a novel combined inhibitor was used to separate quartz and feldspar in near-neutral pulp.Selective inhibition of the combined inhibitor was assessed by micro-flotation experiments.And a series of detection methods were used to detect differences in the surface properties of feldspars and quartz after flotation reagents and put forward the synergistic strengthening mechanism.The outcomes were pointed out that pre-mixing combined inhibitors were more effective than the addition of Ca^(2+)and SS in sequence under the optimal proportion of 1:5.A concentrate from artificial mixed minerals that was characterized by a high quartz grade and a high recovery was acquired,and was found to be 90.70wt% and 83.70%,respectively.It was demonstrated that the combined inhibitor selectively prevented the action of the collector and feldspar from Fourier-transform infrared(FT-IR)and adsorption capacity tests.The results of X-ray photoelectron spectroscopy(XPS)indicated that Ca^(2+)directly interacts with the surface of quartz to increase the adsorption of collectors.In contrast,the chemistry property of Al on the feldspar surface was altered by combined inhibitor due to Na^(+)and Ca^(2+)taking the place of K^(+),resulting in the composite inhibitor forms a hydrophilic structure,which prevents the adsorption of the collector on the surface of feldspar by interacting with the Al active site.The combination of Ca^(2+)and SS synergically strengthens the difference of collecting property between quartz and feldspar by collector,thus achieving the effect of efficient separation.A new strategy for flotation to separate quartz from feldspar in near-neutral pulp was provided.
基金done during the first author's Fulbright fellowship at the Center for Advanced Separation (CAST)/Virginia Technical Institute and State University-USA. Salah would like to thank all the people who work at CAST for their friendship and support during his stay in Blacksburg, VA.
文摘Flotation performance of a de-slimed(-150+53μm)Jordanian siliceous phosphate was evaluated in a batch laboratory flotation column 100 cm high and 5 cm inside diameter.The collector used during anionic flotation was sodium oleate while an amine acetate(AEROMINE 3100C)was used for cationic flotation.Flotation comparison at different collector dosage,superficial gas velocity,and frother concentration showed that the maximum difference in performance between cationic and anionic flotation was obtained with these flotation parameters:30×10^(-6)(mg/L)frother concentration,250 g/t collector concentration,and 3.4 cm/s superficial gas velocity.At these operating conditions amine (cationic)flotation gave 7%higher flotation recovery,a 6%cleaner concentrate grade,and was 6%more efficient at removing silica.
文摘A new synthetic reagent DPTUHP [diphenyl α-(3-phenylthioureido) hexylpbosphonate] containing a hydrocarbon chain nonpolar group, a thioureido, and a phosphonate easter chelating group, has proven to be an effective collector for the flotation of cerussite mineral. The synthetic method utilized the Mannich-type reaction of an N-monosubstituted thiourea, an aldehyde, and triphenyl phosphate in glacial acetic acid solution. The experimental results of flotation of the cerussite mineral show that the collector has stronger collecting ability and higher selectivity in a neutral and a slightly alkaline medium, especially in the pulp of pH=8. Using the measurements by infrared spectroscopy (IR) and X-ray photoelectron spectroscopy (XPS) of the cerussite mineral, the collector, as well as the cerussite treated with the collector, the flotation mechanism of cerussite has been discussed. It is concluded that the adsorption of collector on cerussite is a chemical adsorption through the electron donor atoms of the collector chelating the Pb ( Ⅱ ) of cerussite to form chelate.
基金Projects(22108114, 5180031184) supported by the National Natural Science Foundation of China。
文摘The adsorption mechanism of O-isopropyl-S-[2-(hydroxyimino) propyl] dithiocarbonate ester(IPXPO) to chalcopyrite was investigated by using contact angle, in-situ atomic force microscopy(in-situ AFM), cyclic voltammetry(CV) and X-ray photoelectron spectroscopy(XPS). The results of contact angle and in-situ AFM demonstrated that IPXPO adsorbed on chalcopyrite increases surface hydrophobicity and roughness. It was found by CV experiments that a layer passive film was formed. The results of XPS spectra further revealed that the thiol S atom, oxime N atom, and O atom in the IPXPO molecule might react with copper atoms to form Cu-S, Cu-N, and Cu-O bonds, respectively. An artificial mixed minerals flotation test indicated that under the condition of pH=6.79 and IPXPO initial concentration 5×10^(-5)mol/L, the flotation recovery of chalcopyrite reached about 90%, while for pyrite only 25%, suggesting that IPXPO is an excellent collector for flotation separation and enrichment of chalcopyrite.
基金This work was supported by the National Natural Science of China(51904001)Anhui Provincial Natural Science(2008085QE223)China Postdoctoral Science(2020M673590XB).
文摘Chlorite,as the most representative gangue mineral associated with specularite,of which the separation of these two minerals is difficult.This paper investigated the depression effect of taurine on specularite/chlorite separation via flotation experiments,adsorption tests,contact angle measurements,Zeta potential detection,FT-IR measurements,and XPS analyses.The results of single mineral flotation indicated that chlorite could be depressed selectively by taurine with the recovery of less than 30%,but the floatability of specularite remains high with recovery rate of 81.77%at pH 10.The artificial mixed mineral flotation results confirmed the effectiveness of taurine as a depressant.Surface adsorption,contact angle,and Zeta potential detection revealed taurine primarily adsorbs on the chlorite surface,which hampered the DDA’s subsequent adsorption and results in the chlorite’s poor floatability.The FT-IR spectra and XPS analyses provided further proof that taurine adsorbed on chlorite surface as an electron donor,and part of the electrons transferred from the sulfonic acid group of taurine to metal ions during the adsorption process.In addition,the hydrogen bond between amino-group of taurine and O ions in chlorite surface was also formed in the adsorption process.Finally,optimized adsorption configurations of taurine on chlorite surfaces were proposed.
基金financial supports from the National Natural Science Foundation of China(Nos.U2067201,51774328)the Key Program for International S&T Cooperation Projects of China(No.2021YFE0106800)+2 种基金the Science Fund for Distinguished Young Scholars of Hunan Province,China(No.2020JJ2044)the Young Elite Scientists Sponsorship Program by Hunan province of China(No.2018RS3011)the National 111 Project of China(No.B14034)。
文摘In flotation,metal ions possess significant roles that are usually fulfilled by either selectively activating or depressing the target minerals.Despite that tremendous efforts have been made to address the roles of metal ions in flotation,it still lacks a comprehensive review,especially to compare various ions instead of focusing on a specific one.This review begins by elaborately categorizing the factors involved in affecting the roles of metal ions in flotation.After that,well-accepted mechanisms are updated and discussed from the ore type.Furthermore,typical approaches to explore the underlying mechanisms are emphasized,including traditional techniques such as micro-flotation,contact angle measurement,zeta potential measurement,and other recent prevailing methodologies,like computational method,solution chemistry calculation,and cyclic voltammetry.This work will pave the way to promote flotations via activities like selectively adding/reducing metal ions,choosing reagents,and regulating the slurry chemistry.
基金supported by the Youth Science Foundation of China(No.52004333)the Key Laboratory of Hunan Province for Clean and Efficiency Utilization of Strategic Calcium-containing Mineral Resources(No.2018TP1002).
文摘The flotation separation of magnesite from calcium-containing minerals has always been a difficult subject in minerals processing.This work studied the inhibition effects of carboxymethyl cellulose(CMC),sodium lignosulphonate,polyaspartic acid(PASP)and sodium silicate on flotation behaviors of magnesite,dolomite and calcite,providing guidance for the development of reagents in magnesite flotation.The micro-flotation results showed that among these four depressants,sodium silicate presented the strongest selectivity due to the highest recovery difference,and the flotation separation of magnesite from dolomite and calcite could be achieved by using sodium silicate as the depressant.Contact angle measurement indicated that the addition of sodium silicate caused the largest differences in surface wettability of the three minerals,which was in line with micro-flotation tests.Furthermore,zeta potential test,the Fourier transform infrared(FT-IR)spectroscopy and atomic force microscope(AFM)imaging were used to reveal the inhibition mechanism of sodium silicate.The results indicated that the dominated component SiO(OH)3of sodium silicate could adsorb on minerals surfaces,and the adsorption of sodium silicate hardly affected the adsorption of NaOL on magnesite surface,but caused the reduction of NaOL adsorption on dolomite and calcite surfaces,thereby increasing the flotation selectivity.
文摘Flotation is a complex multifaceted process that is widely used for the separation of finely ground minerals. The theory of froth flotation is complex and is not completely understood. This fact has been brought many monitoring challenges in a coal processing plant. To solve those challenges, it is important to understand the effect of different parameters on the fine particle separation, and control flotation performance for a particular system. This study is going to indicate the effect of various parameters (particle Characteristics and hydrodynamic conditions) on coal flotation responses (flotation rate constant and recovery) by different modeling techniques. A comprehensive coal flotation database was prepared for the statistical and soft computing methods. Statistical factors were used for variable selections. Results were in a good agreement with recent theoretical flotation investigations. Computational models accurately can estimate flotation rate constant and coal recovery (correlation coefficient 0.85, and 0.99, respectively). According to the results, it can be concluded that the soft computing models can overcome the complexity of process and be used as an expert system to control, and optimize parameters of coal flotation process.
基金Project(2005CB623701) supported by the National Basic Research Program of ChinaProject(50874118) supported by the National Natural Science Foundation of ChinaProjet(2007B52) supported by the Foundation for the Author of National Excellent Doctoral Dissertation of China
文摘To search a novel class of effective silicate mineral collectors,the Gemini quaternary ammonium salt surfactant(butane-α,ω-bis(dimethyl dodeculammonium bromide),12-4-12) and its corresponding conventional monomeric surfactant(dedecyl trimethyl ammonium bromide,DTAB) were adopted to comparatively study the flotation behaviors of illite,pyrophyllite and kaolinite. Three silicate minerals with the Gemini surfactant as collector reveal floatability far better than with the corresponding traditional one. At pH 6,the best recoveries of illite,pyrophyllite and kaolinite with 3.5×10-4 mol/L 12-4-12 are 99.2%,91.7% and 99.6%,respectively. The fluorescence and contact angle measurement were also conducted for the further investigation of surfactants aggregation behavior and silicate mineral surface hydrophobic properties. FTIR spectra analysis and electrokinetic analysis show that the mechanism of adsorption of collector molecules on mineral surfaces is almost identical for the electronic attraction and hydrogen bonds effect. The superior collecting power of dimeric collector may be attributed primarily to its special structure and its essential properties.
基金Project(51474253)supported by the National Natural Science Foundation of China。
文摘The surface hydrophobization and flotation of a xanthate−hydroxamate collector toward copper oxide mineral were compared with the combined collectors of xanthate and hydroxamate through water contact angle(WCA)and micro-flotation experiments.The results showed that S-[(2-hydroxyamino)-2-oxoethyl]-O-octyl-dithiocarbonate ester(HAOODE)exhibited stronger hydrophobization and better flotation performance to malachite(Cu2(OH)2CO3)than octyl-hydroxamic acid(OHA)and its combination with S-allyl-O-ethyl xanthate ester(AEXE).To understand the hydrophobic intensification mechanism of HAOODE to malachite,zeta potential,atomic force microscopy(AFM)and XPS measurements were carried out.The results recommended that malachite chemisorbed HAOODE to form Cu—HAOODE complexes in which the hydroxamate—(O,O)—Cu and—O—C(—S—Cu)—S—configurations co-existed.The co-adsorption of HAOODE’s hetero-difunctional groups was more stable than the single-functionalgroup adsorption of OHA and AEXE,which produced the“loop”structure and intensified the self-assembly alignment of HAOODE on malachite surfaces.In addition,the“h”shape steric orientation of the double hydrophobic groups in HAOODE facilitated stronger hydrophobization toward malachite than the“line”or“V”hydrophobic carbon chains of OHA or AEXE.Thus,HAOODE achieved the preferable flotation recovery of malachite particles in comparison with OHA and AEXE.
文摘Experiments on the partitioning of Cu between different granitic silicate melts and the respective coexisting aqueous fluids have been performed under conditions of 850 ℃, 100 MPa and oxygen fugacity (fO2) buffered at approaching Ni-NiO (NNO). Partition coefficients of Cu (Dcu = Cfluid/Cmelt) were varied with different alumina/alkali mole ratios [Al2O3/(Na2O + K2O), abbreviated as Al/ Alk], Na/K mole ratios, and SiO2 mole contents. The DCu increased from 1.28 ± 0.01 to 22.18 ±0.22 with the increase of Al/Alk mole ratios (ranging from 0.64 to 1.20) and Na/K mole ratios (ranging from 0.58 to 2.56). The experimental results also showed that Dcu was positively correlated with the HCl concentration of the starting fluid. The Dcu was independent of the SiO2 mole content in the range of SiO2 content considered. No Dcu value was less than 1 in our experiments at 850 ℃ and 100 MPa, indicating that Cu preferred to enter the fluid phase rather than the coexisting melt phase under most conditions in the melt-fluid system, and thus a significant amount of Cu could be transported in the fluid phase in the magmatichydrothermal environment. The results indicated that Cu favored partitioning into the aqueous fluid rather than the melt phase if there was a high Na/K ratio, Na-rich, peraluminous granitic melt coexisting with the high Cl^- fluid.